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Three things are discussed in this note around two results in the theory of angular momentum. First,
certain Clebsch-Gordan coefficients of a compact topological group, which has a representation
generalizing the antisymmetric representation [1"] of S,, are shown to possess an interesting symmetry
property. Second, for physical purpose this property is applied to the octahedral group O =8, and its
double (i.e., covering) group O* (i.e., O*/S,=O) considered as subgroups of SO, and SU,, respectively. We
take this opportunity for briefly connecting some papers on the representation theory of SU, recently
published in this journal with some previous works by the author on the Wigner—Racah algebra of a
noncanonical chain SU, 2 G. Third, the material is used for rationalizing the well-known (j = 1)- and less
known (j = 1/2)-isomorphisms of molecular physics in terms of isoscalar factors for the chains SO,C O and

SU,.C.O*, respectively.

1. PRELIMINARIES

Result 1: An elementary calculation shows that! the
matrix of the angular momentum J within the subspace
spanned by

B, ={-(1/V2)|2- 1)~ (1/VD)|21),
(/2 2-1)-GE/NVD|21), - (1/VD)|2-2)
+(1/V2) | 22)}
is equal to the matrix of - J within
B =N [1-D- VD11, (VD [1-1)
+ /D [11), [10)}.
(As usual, |jm) denotes a normalized eigenvector of J?
and J,.) Of course, the preceding equality still holds
when the basis B;, j=2 and 1, undergo the same unitary
transformation. Therefore, in what precedes we may
replace the Cartesian basis B, and B, by the pseudosphe-
rical basis
B={{2~1),- (1/V2)[2-2) +(1/V2]22), - |21}
and
B ={|11), [10), [1- D)},

respectively. >~* This first result turns out to be very
useful in molecular physics and more specifically in
ligand field theory. =%

Result 2: In the same spirit, it is straightforward to
verify that'*® the matrix of J within the subspace

e {(3) -2 () 8- ()"
) )

is equal to the matrix of —$J within

5.5
272

By, ={|45), |4 =D}

A formal proof of Result 1 has been given by Griffith®
through the using of Clesbsch—~Gordan coefficients
(CGc’s) for the octahedral group O. More recently,
Buch® has reconsidered this proof in terms of isoscalar
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factors for the chain SO, >0. The proof by Griffith and
thus by Buch lies in a symmetry property for some par-
ticular CGe’s of O (a subgroup of SO,!). Reasonably, a
similar property for the CGe’s of the spinor octahedral
group O* (a subgroup of SU,!) should lead to a proof of
Result 2,

The aim of this article is to investigate Results 1 and
2, as well as their extensions to other subspaces than
B, and By 5,1+ in the light of the Wigner—Racah alge-

" bra (WRa) of the chains 80;2 0 and SU,> O*, respec-

tively. Section 2 is devoted to a particular symmetry
property for the CGc’s of a given family (including O
and O*) of groups. In Sec. 3 some basic considerations,
useful to our problem, on the WRa of an arbitrary chain
SU,>...2G">G'D G are reviewed. In addition, these
considerations are connected to some (apparently dis-
tant) papers recently publighed in this journal. Finally,
we go back to our physical problem in Sec. 4 by com-
bining Secs. 3 and 2.

2. ON THE SYMMETRY OF CERTAIN CLEBSCH—
GORDAN COEFFICIENTS

Notations: Let G be a compact topological group. We
use I' to denote an irreducible representations class
(IRC) of G, For each IRC I', we make a choice of a uni-
tary matrix representation

D' ={D"(R):Re G},

the matrix elements of D" (R) being D' (R),,, with ¥,
y'=1,2,..., dimI'. We take the G irreducible tensorial
sets (ITS’s) that we deal with in the standard form. That
is to say, an ITS associated to I' spans D' rather than

a representation equivalent to D', We choose a set of
CGc’s compatible with our set

{D": all possible I'’s}.

Finally, the notation (I4T',%,%,|8I'y), where B is an inter-
nal multiplicity label, is employed for the CGe’s of G.

Special hypothesis: As first hypothesis, we assume
that G possesses a one-dimensional representation
D0 distinet from the identity representation DT ¢, Clear-
ly, the inner Kronecker product I'® 1"~0 is an IRC. We
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convene to denote I'® I'yas I once and only once I'® T,
#I'. As second hypothesis, we assume our set

{D": all possible I'’s} to be constructed in such a way
that DX =D" ® DN,

Theovem: K T" is contained once and only once in
T'®T, and i I® T #T and T® T #T", we have

(C1T5%1 72| T9) = (T 0,0 (0 Ton v, | TY), (1)

where (', [,[") is a phase factor which does not depend
on ¥, ¥, and y.

Outline of proof and discussion: The proof is immediate
when specializing Gaunt’s formula’

L D" (R *DPL(R), 1y D°2(R), 3 dus(R)
=[/ du(R)/dimF]§ (U1 Do %2 | BT Ty vy | BTY)*

to our particular case. [The integration in [z« -du(R),
where du is the relevant Haar measure, is to be per-
formed over the topological space G of G. 1 Therefore,
we get the relation

(flrz'yl'}’zl f'}’)(f1fz')’1")’é1 Ly)*
= (I TNl IY(CLT 0y, | TY)*

from which the announced theorem is easily deduced.
Moreover, we may always arrange that the factor
#(I'y[,T) in Eq. (1) be equal to 1. Note that a relation
similar to Eq. (1) holds when I',T'; is replaced by I',[,.
Note also that Eq. (1) may be extended to the cases
where I® Iy and/or I'® T, are equal to I, and/or T,
respectively; the corresponding formulas are compli-
cated and not interesting for our physical purpose, so
we shall not present them here. These matters general-
ize the particular symmetry properties of the V coeffi-
cients for some simply reducible groups® of interest in
molecular physics.

Examples: The group S, is particularly adequate for
illustrating the preceding ideas. In that case I’ corre-
sponds to the partition [#] and the unique I}, corresponds to
[1*]. Furthermore, [a] standing for an arbitrary IRC of
S,, the IRC’s [a]® [1"] and [a] are customarily said to
be associate or conjugate. According to our convention,
we use the notation []® [1"]=[a] only when {a]® [17]
#{a], a fact which slightly differs from the literature on
S,. To be more specific let ug_gonsider S, ~Q, The five
IRC’s {4], [31], [22], [21%]=[31], and [1*]=[4] for S,
are generally denoted by the chemical physicists as A,,
T, E, Ty, and A, for O, respectively. The theorem
gives

(311alny,| (3110
=([218][aln 7. |[212]Y) ¥, ¥s ¥, and [a]

which can be rewritten as

(T.Tv,y| Ton) = (Tal%y| Tyon) W%, % m,and T (2)

Equation (2) specializes to the relation®:®
T, T, T, Ty Ty T,

=V V 71, Y2 and ¥
Yi Y2 Y

"o Y2 v
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that actually explains Result 1,3%-¢

As another example, let us consider O*. This group
has seven IRC’s: Ay, Ty, E, T,=T,, A,=A4, (the five
single-valued classes of O) and E', U’, E'' =E’ (the
three double-valued classes of O). According to the
theorem, we have

(E"Tv | E"™n) = (E'Tvy |EY)¥Y2, v, 7, and T (3)

which will be proved to explain Result 2.

3. WIGNER—-RACAH ALGEBRA FOR A CHAIN
SU, > -DG"DG' DG

Trivialities: Let G be a subgroup of SU,. We shall use
the notations of Sec. 2 for denoting the IRC’s, irreduci-
ble unitary matrix representations, and related CGc’s
of G. The restriction to G of each IRC () of SU,
(j=0,%,1,--.) yields a generally reducible representa-
tions class of G. This means that the standard irredu-
cible matrix representation /) ¢* of SU, restricted to G
is equivalent to a completely reduced representation
&p o(T1/)DY of G, where o(I' |4) is the frequency of I in
(/). In other words, there exists a unitary matrix U?,
whose elements are denoted as Ufn'ap,, such that

Z; Ujm,u.l'"r*[) v )(R) mm!’ Uj m’ ,a’T'r*
mm?

=6(¢'a)8(I''T)D" (R),,» ¥ R G,

where m, m’'=—j,—j+1,...,7 and the symbol « is an
external multiplicity label necessary only when o(I" |5)
>1, Note that a may be a simple numeral taking the
values 1,2, ...,0('lj) or a complicated symbol contain-
ing IRC’s of the groups G’, G”, *** such that SU,D - - -
5G">6'DG. 1t is thus possible to construct G ITS’s
from the SU, ITS’s of vectors {|ajm): m==j,-j+1,
...,j} and operators {T%: g==k, -k +1,...,k}. For
instance,

{Iajal“v)=Z\ajM)U"m,m: y=1, 2, ...,dimr}
is a G TTS spanning D', The same thing is true for
{Tﬁ“r =L Tl v ¥=1,2,..., diml"} .
a
The f function: The function f defined via

Js Jz J

4 HIyy alpyv, al'y

=@ + DUV L UL, o,

mgmmy

X Ujm,arv(jajmzm ‘jl‘m’l)UJl my ,a1r'111*v
where (jpjm,m|jym,) is a standard SU, CGe, proved to be
very useful in the field of molecular physics.? 1% The
properties (existence conditions, selection rules, sym-
metry properties, orthogonality properties, -.-) of the
f coefficients have been extensively studied.®-!! We shall
only report here the factorization formula'’

N ]2 ] 1/2 23
=(2j, + )13
oy aLpy, al'y @ + D7 A=)
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><§ (7,@,T +jar | @, T1)X(T, T,y | BT 1) %, (4)

which will be used in the following. The coefficient (+ |)
is independent of the indices v,, ¥, and y;. Equation (4)
trivially follows from the Racah lemma applied to the
chain SU,> G or alternatively from the G Wigner—
Eckart theorem (WEt) written in a SU,D G basis.

The U function: The isoscalar factor (+ |) resembles
the coefficient U rediscovered (cf. Ref. 12) by Buch®
for a chain 8O;2(, where ( is a finite multiplicity-free
group. Actually, the relation

; 1/2
U{a‘ll:l “2{: “If}=(%zﬂl£i— (L,a,T, + kaT | l;a,Ty)*
holds for the integer representations of the chain SU,
DG*, where(* is the spinor group of . It should be
noted that the arguments of the function U generally com-
prise three a’s, a point which was apparently overloocked
in the formalism described in Ref. 6 (cf. also Ref. 12).

Wignev=Eckart theorems: Emphasis is placed on the
U function in Buch’s paper. We believe that the function
important for the applications (to molecular physics) is
the f function. As a matter of fact, the SU, WEt in a
SU, D basis reads®

(i Iy l T | 02 30,1375)

- Jy Jy 3

_(anlnr‘nasz)f(alrly1 s ary) , (5)
where the reduced matrix element (I IIl), independent of
the [’ matrices, coincides with the one defined by
Racah. So that all the geometrical dependence of the
right-hand side of Eq. (5) is contained within a single
coefficient, viz., the f coefficient. The U coefficient, or
more generally the (+ ) coefficient, makes it possible
to connect the SU, WEt and the G WEt both expressed in
a 8U,D G basis. Indeed, the left-hand side of Eq. (5)
may alternatively be written as

(i I'in I ﬁar ‘ 25050 575)
= (diml"l)'l 23 (Q1J1d1r1“Tkar ||asza2I‘z)B
8

X (Dol oy | BTy )* (6)

owing to the G WEt. Consequently, from Egs. (4)—(6),
we get!?

(alJlall"l”T“rH CYngagr‘g)B
= (- D)#[dimI /(2J; + DT %(ay 1 T* ] apd,)
X (J,a,T5 + kal [J;0, 8T )%,

a relation which extends to an arbitrary chain SU,> G
the relation (7) of Ref. 6 valid for the chain 80,2

Basis for SU,: Before leaving this Section it is per-
haps worthwhile to shortly connect the WRa of SU, in an
SU,> G basis with the representation theory of SU,. The
theory of the representation of SU, has been revived in
the last few years (for example, see Refs. 13—16). In the
terminology of Patera and Winternitz, 17 there are two
approaches to the representation theory of SU,: (i) the
“Lie subgroup type” one and (ii) the “non- Lie subgroup
type” one.
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(i) There exists only one, up to isomorphism, Lie
subgroup type approach, namely, the standard or canon-
ical one corresponding to the set {J?, J,} of commuting
operat:ors.15 This quantum-mechanical approach is the
starting point for the WRa of SO; {or SU,) in the standard
SO, 2 80, (or SU,> U,) basis. We thus have the {jm}
scheme: the quantities relevant for the representation
algebra and the WRa of SU, in the canonical basis SU,

D U, are labeled by j’s and m’s.

(ii) On the other hand, there exists only one, up to
isomorphism, second-order non-Lie subgroup type ap-
proach, viz., that one corresponding to the set
{2, 2+ 99%q of commuting operators.'® This leads
to the {j)\} scheme: the labels consist in that case of j’s
and )'s where X denotes an eigenvalue of J2+ »J2,

To the two above schemes we can add the {jar}
scheme which is relative to the WRa of SU, in a non-
standard or noncanonical SU,> G basis. An operator
formulation of this scheme could be the following: the
{jary} scheme corresponds to the set

{/% P(T¥) = [; du(R)D"(R),,*Py: all possible I'y’s}

of commuting operators, where P(I'y) is the I'yth Wigner
projection operator of G. The {iary} scheme covers, to
some extent, the two preceding ones: obviously the {]m}
scheme corresponds to G =U; and the {j»} scheme cor-
responds to G =D,*, the covering of the dihedral group
D,. This last point allows us to qualitatively obtain the
results of Secs. 3,4, and 5 of Ref. 15.'® From a quanti~
tative point of view, the using of vectors adapted fo the
chain SU,> D,* could then simplify the calculation of

the eigenvalues and eigenvectors of J§+VJ§. In addition,
the consideration of the chain SU,2 O* D Dy* O D,* makes
it possible to partly fill in the gap between SU, and D,*
and therefore: (i) to partly overcome the missing label
problem when o(I'17) > 1, where I' stands for an IRC of D,*
(the problem is thus completely solved for j=3,1,... ,’ 4)
(ii) to possibly further simplify the calculation of the
eigenstates of J2+7J2. In the same way, the considera-
tion of the chain SU,> D.*D D,* allows us to successful-
ly handle the missing label problem. This and other
ways out'® are the subjects of future research.

4. EXTENSION OF RESULTS 1 AND 2

In view of our physical problem we now go to the in-
troduction of Eqs. (2) and (3) into the CGe’s for the
chains S0, ° O and 85U, O*, respectively. From Egs.
(4) and (2), we get the first master formula

jl jz k ) =Al3/(24, + 1/2
= 1
(alm oy, aTyy) =A@+ 1]

X (jpa,t + kaTy |j1¢l1t)*f( (7

1 1 1 >
' Ty Tvy)’
where £=T; or T, and A is the following phase factor
A=(1Ty +1T,|1T)).

The other master formula

Paoer, any atiy) = B2/ D

1€ azev, alyy
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E'vy E'v, Tiw)’ ®
where e=E’ or E” and the phase factor B is
B=(E'+1T,[z:E"),
follows from Eqs. (4) and (3).

1 1
X (ja5€ + kaT, ljlale)*f( ; ;

“The combination of Eqs. (5) and (7) leads, after some
manipulations, to

Gty |37 jagty,) = a(1T v | J371] 1Ty7,), (9

where the proportionality constant « (independent of
", ¥, and 72) writes

a=A[jG +1)/2]' #(jayt + 17 | ja )%

Equation (9) shows that the matrix of J within the ¢

(=Ty or T,) components of a j state (j=1,2,3,--+) is
proportional to that one within the 7y components of a

p state. In the same way, from Eqs. (5) and (8) we have

(jareny |71 jazey,) = BGE v, | AT L E'y,), (10)

where
B=B2[j(j +1)/31 %(jaze + 1T, |jay )*.

Equation (10) proves the proportionality of the matrices
of J within the e (=E’ or E") components of a j state
(i=%,3, 3, ') and within the £’ components of a 3 state.

Results 1 and 2 appear as particular cases of Egs.
(9) and (10), respectively. As an example, the sets B,
and B, are SQ, ITS’s, in a SO,2 02 D,> D, basis, of
order 1 and 2, respectively. Consequently, the propor-
tionality constant between the subspaces B; and B;.,
reads

a(B,, B,) = AV3(2T, + 1T, | 2T ,)*

an expression which makes precise the corresponding
result obtained in Ref. 6.
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The Weyl transform is defined rigorously on the twisted product algebra of ¢* functions slowly increasing
at . The image set under the Weyl rule of correspondence is shown to contain linear unbounded
operators. In particular, the momentum and the coordinate operators P and Q and the polynomial

functions of P and Q are included.

I. INTRODUCTION

The present paper aims at giving a mathematically
rigorous definition of the Weyl transform?® on a suf-
ficiently large class of tempered distributions, so that
the image set under the Weyl correspondence contains
densely defined, not necessarily bounded linear opera-
tors on a Hilbert space. In particular, the momentum
and the coordinate operators P and @ and the polynomial
functions in P and @ are to be included.

In Ref. 2, Kastler showed that the Weyl correspon-
dence can be viewed as a faithful x-representation of the
B x-algebra of bounded measures on a 2x-dimensional
symplectic space under the twisted convolution. Lonpias
and Miracle-Sole® extended Kastler’s result to a class
of tempered distributions whose image setunder the
Wey!l correspondence consisted of bounded operators.
Other work related to this topic can also be found in
Refs. 4, 5, and 6. While Refs. 4, 5 deal with bounded
operators only, Ref. 6 is mainly concerned with the
relationship between the phase space formulation of
quantum mechanics and the theory of pseudodifferential
operators.

The notations in this paper are those used in Ref. 7.
The reader is also referred to Sec. III of the same paper
for definitions and facts about the twisted convolution
and the twisted product of distributions.

In Sec. II of this paper, some noncommutative al-
gebra of distributions are constructed, with multiplica-
tion given by the twisted convolution and the twisted
product. These are generalizations of the *-algebras
E’, 04, and O, of L. Schwartz.®"® Using these results,
in Sec. III we extend the domain of definition of the
Weyl transform to elements in O,(R?"). The properties
of the Weyl transform so defined form the contents of
Theorem 4.1, The Weyl correspondence is seen to be a
* and product preserving bijection from the * -algebra
O, with the twisted product to the set of closable linear
operators on a common dense set in a Hilbert space.

li. SOME NONCOMMUTATIVE ALGEBRAS OF
DISTRIBUTIONS

It is known in the theory of distributions that E’ and
Of form convolution algebras.® We generalize these
results to the case where the twisted convolution and the
twisted product are used. If §, is the delta distribution
concentrated at 0 and O/(R?",*¢) and O, (R?",oc) are
spaces of O’(R®) and O}(R*") equipped with the twisted
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convolution and the twisted product as multiplication
respectively, we have the following results:

Theorem 2.1: O)(R?", *¢) is a noncommutative algebra
with unit element §, for each ¢#0.

Covollary 2.1: E'(R? xc) is a subalgebra of O/(R?", xc)
with unit element 35,

Corollary 2.2: 0,(R?*", °¢) is a non-commutative al-
gebra with unit element 1,

To prove Theorem 2.1 and its corollaries, we need
the following lemmas:

Lemma 2.1: Let ® € 0,. Then E (¢} cO,.

Proof: For each ne R*" and ¢ real, E,(c, £)=exp|(ic/
2)n % £] is infinitely differentiable as a function of &,
Using the Leibniz rule for differentiation, we have

»(E,(c)e)=Z (P\u(E,(c)o*.
asp q

Now 3°E,(c)=P,(n,c)E,(c), where P,(n,c) is a polynomi-

al in 7 and ¢ of degree < |gl, so that

A+ [g|2ro¥(E, (c)@)= 2 (q>Pq(‘n,c)(1 + [ E|2E, (c)a% 6 .
asp P

It follows that

|1+ | &|2Re2(E,(c)®)]

< (p) |Pm,e)] [(1+ [&]rar=a | ~0

q%p q

as | £l =« if k is taken to be an integer so that |(1
+ 1 £12)3?4g | =~ 0 as | £] —~ =, Such integer k exists since
¢e0,. |||

Lemma 2.2: Let u,v€ O,. Then u*cve O
Proof: Consider v as a tempered distribution; we have
(E,(c)v,®)=(v,E,(c)®), &cS(R™).
Since E,(c) as a function of £ is a member of O,, so
that E,(c)ve S'(R*"). By Lemma 2.1, E (c)0 <€ O, if &
€ O0,. From the fact that S is dense in O, there is a

sequence {®}in S and &, —~&. Also, we have E,(c)®,
—E,(c)®. From the continuity of v,

(E,(ch,® )=, E,(c)®,) = (v,E,(c))=(E,(c),®), &cO,.

This shows E,(c)ve 0, Now u* cv=ux (E,(c)v)e O,
since E, (c)v€ 0!,.. This follows from the fact
that O/, is a convolution algebra of distributions. |||
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Lemma 2.3: Sox cu=ux*cb,=u for alluc O’.
Proof: 8,% cu=38,x (E,(c)u) so that
(Bo% E,(chu,®) = (8,(n), (E,(cu)(£),8 (& + 7))

=(£),®(£) =(u,®) foralldcoO,.

A similar computation shows u* c6y=u. |||

Lemma 2. 4: Let u,v,we O). Then u* c(v* cw)

= (ux cv)* cw.

Proof. Both sides of the above equation are well de-
fined and are members of O/ by Lemma 2.2. A rather
lengthy but straightforward computation shows that
equality holds. We omit the details.

Proof of Theorem 2.1

The results of Lemmas 2.1, 2.2, 2.3, and 2. 4 toge-
ther with the fact that the twisted convolution * ¢ is non-
commutative for ¢ # 0 can be used to give a proof of
Theorem 2.1,

Proof of Corollary 2.1

Since E'(R*") C O/(R®*) and 6,< E'(R?"), it is enough to
verify the closure property for u,v< E'(R*"). Let A, B
be the supports of u,v. Now ux cv=ux* (E (c)v). We
wish to show that E,(c)v has compact support and the
supplE,(cv]=B. For each ne R?" and ¢ real, E (c)v is
a distribution since E,(c,¢) is infinitely differentiable.
That is,
(E,(c)v,®)=(v,E,(c)®) for all &< C(R*).
Now supp(E, (c)®)=supp®; we have (E,(c)v,®) = (v, E,(c)®)
=0 for all & € C(B°), and B¢ is the complementary set of
B in R®", 1t follows that supp(E,(c)v)= suppv = B. There-
fore, u * cve E’(R?") since E’(R®) is a convolution al-
algebra. |||

Proof of Corollary 2.2

The closure property of O4(R*") under the twisted
product from the way it is defined, the properties of
the Fourier transform F and the results of Theorem
2.1. Since the unit function 1< 0,(R*") and F1={27)"5,,
one verifies readily that lecg=gocl=g for all g€ O,.

To verify that the twisted product is associative, let
f,2,h be elements of 0,(R*"). Now

foclgoch)= 2n)y"F{Ff*cF(geoch)]
= (27) 2" F-Y{Ffx cFF(Fg« cFh)]
= (27) 2 FY Ffx c(Fg* cFh)]
= (27) 2" F-Y{{Ff* cFg) » c(Fh)] by Theorem 2.1,

On the other hand,

(focg)och= (2n) " F(Ffx cFg)ech]

= (27) 2 FY Y FFYFf+ cFg)* c(Fh)]
= 2n) 2" F(Ff« cF) xc(FW)]. |||

I1l. WEYL TRANSFORM OF DISTRIBUTIONS
Let

P:(Plapz, . ,Pn), Qz(Qqu, ... ,Q,,),
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where P, Qj, 1<j<n are linear unbounded self-ad-
joint Schrodmger operators' defined in dense sets De ,
Do in /2(R") respectively by !

. d
(Pjrp)(x)z—zcifj—, weDPj
and
(Q¥)(x)=x¥(x), ¥el,

i
¢ is a positive constant (usually denoted by 7, the Planck
constant). If (s,?#) is an element of R? with

t-P=3t,P,,

jel
s° Q: Z sj Qj’
=1
{exp(it,P,)}, {explis,@,)} are the one-parameter unitary
354 1%

groups generated by (P, and Q,.

The unitary operators exp(i¢+ P) and exp(is * @) can
also be defined and their actions on an element ¢ of
L3R") is given by

(exp(it ° P)p)x)=
(exp(is * @)9)x) = explis - x)@(x),
from which the Weyl form of CCR follows:

o(x+ct),

exp(it « P)explis * @) =exp(it - s) explis - @) exp(it * P).

Consequently, for each (s,¢)€ R®", the operator
(s, t)= expl(ic/2)s * t] exp(— it ° P) explis * Q)
is unitary and
(n(s, ) x)=exp[(is * (x —c/28)]o(
It follows then

x —ct).

(s, nlu,v)=explicls v =t -u)/2]n(s +u,t+v)

for each (s,t), (u,v) in R*. The map n: (s,#) ~w(s,?) is
the “Schrodmger representation” of the irreducible
Weyl system on [ %(R").*°

Let fe [ 2(R?) and ¢, ¥ < [ 3(R").
of f, denoted by w(f), is given by

w( N, ¥)= )" [[ (n(s, D0, ¥NFN(s, t)ds dt

The Weyl transform

where (¢, +) denotes the inner product in /*(R"). W(y)
can be shown®® to be a linear operator on /?(R") of
Hilbert—Schmidt type. In fact the Weyl correspondence
7~ w(f) is an algebra isomorphism from the twisted
algebra / 2(R®", oc) to the B x-algebra of Hilbert—
Schmidt operators on / 2(R").°

With the above preliminaries, we generalize the Weyl
transform as a map from O,(R?", -¢) to the set A of
closable linear operators defined on the common domain
HD=cCz (R") the space of infinitely differential functions
with compact support, as a dense set in L2(RM.

The following lemma is needed before we can give a
precise definition of the Weyl transform of elements of
Oy (R?", o ¢).

Lemma 4.1; Let o/, (g,p)e R*", and

@,(q,p,%)= (g, p)o)x)=explig - (x — cp/2)]o(x - cp).
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(1) As a function of x, ¢,c0.

(2) As a function of (q,p), @, <€ O(R?").

(4) (¢,,¥)g,p) < O-(R?" for each ¢, ¥e /).
(5
Then

@, a, PN =g, ) eD.

(6) The transformation w(g) given by (w(g)@)x)=
=9, (x)=(g,9,) is a linear closable operator on/) to
itself.

Proof:
(1) This follows immediately from the fact that ¢ /).

)
)
(3) ¢~ ¢, is a bijection from [ to itself.
)
)

Let g€ 0,(R?") and Fg=g¢c OL(R™).

(2) @, is infinitely differentiable in ¢ and p. For a
fixed x and ¢, 2%¢, behaves like polynomials in g, p
for any multi-index ¢. Consequently, ¢ & O (R,

(3) Let ¢, and ¢,/ and (¢,),= (¢,),. But n(g,p) is
unitary and its inverse is #(-g, - p); hence ¢, = @,.
To show ¢ — @, is a surjection, let ¢/, Then n(-g,
—P)</’€0 and ”(Q;P)[W(—q, —P)fp]: Q.

(4) Since
((p,,\I!)(q,p):f(P,(q,p,x)‘i(x)dx
= fexp[iq . (x -cp/2)]<ﬂ(x—cp)\f(x) dx,

and 3¢ ,,(¢,,¥) behaves like a polynomial in ¢,p for any

multi-index o.

(5) Treating x as a parameter, and @ as any multi-
index,

a: (p,,g(x): 3:<g, Gy = <g, a: @1)

with 9%, € O-(R®*") by (2). ¢, , has compact support
since ¢,, as a function of x, has compact support.

(6) Let ¢, €0, lim,..¢,=¢ and lim__ w(g)¢,=¥.
Now n(g,p),(x)= @, (x)€) for each n and lim___(n(g,
Pe)x)=1im,_, ¢, (x)=7lg,p)lim,. , ¢, )x)= ¢, since
n(g,p) is unitary. As a sequence in O,(R*), @, (q,p)

-~ (q,p) for each x. Therefore, from the contmulty of
g, ¥=lim (w(g)e Mx)= hm,,.,, (&, 0 =g,

lim,,-,, Dy = (g, ¢ =w(g)p. Linearity is obvious and
w(geel by (5). |||

The results of Lemma 4.1 justify the following
definition:

Definition 4.1: Let g O,(R*", o¢), The linear operator
w{g) on /) is called the Weyl transform of the distribu-
tion g. The map W: g ~w(g) from O,(R?*", «c) to A is
called the Weyl correspondence.

The properties of the Weyl transform and the Weyl
correspondence are given in the following theorem:

Theovem 4.1: Let gc O, (R?", o).

(1) w(g)*=w(g), where is the adjoint operator of
w(g) and g is the complex conjugate of g.

(2) The Weyl correspondence is an injection.

(3) Let g;,8,< OR?", °c). Then w(g,)w(g,) =

w(gyecg,)
on/ and w(g,.cg,) < A.
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Proof of Theorem 4.1

(1) Since the domain of w(g) is ), we wish to show
(w(2 e, ¥)= (9, w(g)*¥) = (¢, w(g)¥) for all p,¥e).
Using the fact that ge OL(R?*") has the property that for
every k= 0 there is an integer m=m(k) such that

2 3%g s

talsm
where g, is a continuous function on R*" such that
lim
et - (L[] g (8)| =0
we have

w(ge,¥)=(glt),

E (<arxga’ ¢r>,\l'):

lal<sm

o E),¥)
D 2 (gg,2%0,),¥)

lol<m

—(c1el D [f g (£)a%0, (£, x)¥(x) dt dx

lelsm

=(-1e 25 [g ()e,, ¥)(E) dE

lal €m
=<g,(¢,,‘1’)>-
On the other hand,

(0, w(@)=(w(g¥,Py=(g,(¥,, o)

=<§(‘ g),(\lln <p)>:<§(_ g)’ (\I'v (ﬂ)),

=(g(-£),(0,¥,) =(g(- £), (1(- D), ¥

=<4§;)(¢|—’\I’»-

(2) Buppose g,, g, O, (R*™ and let w(g,), w(g,) be the
Weyl transforms of g, and g, and
(w(g)e) (%)= (w(g,)o)x) for all e/,
Then by definition,
<g17 ¢1> = <§2s ¢,>
or
P
(g1~ &, 9 =0 for all el and xe R,

. N N
Since if p#0, ¢,#0, we have g, —g,=0. This implies
that g, =g,, since the Fourier transform is an
isomorphism,

(3) Let 9. Since w(g,)pcl), therefore
w(g)w(glolel.

Now (w(g)o)(¥)=(g, #) =, (x) and

w(g)w(g,)e)=(£(g*, 1), 7(q",p") @r ,, (@, ).
But

7(g*, 0" ¥ g, ((g, p) @) x))
= (&2, [1(g", p)mlq, p)o)(x))

=(&., explic(q*+p - p*+ q)/2]n(g" + q,p* + p)0)
= (expliclg’ *p ~p' *q)/2) 82, 7(g" + q,p* + p)@)
= (Bt o1, 802, 0), 9,(q" + q, p* + p)
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Almost singular potentials*
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Explicit solutions are constructed for the lowest bound states of the Schrodinger equation with an attractive
potential that behaves typically as » ~2*< at the origin. The energy levels and wavefunctions, which depend
on the small parameter € in a nonanalytic way, show some interesting properties; and some relations
between this model and aspects of elementary particle physics are noted.

REVIEW OF SINGULAR POTENTIALS

In the usual study of the Schrédinger equation, in a
state of orbital angular momentum [ (in units with 7#2/
2m=1),

1.d ,d li+1) )
_— — —_— + -E = 1
(S Ll 1D yp) E)r -0, M
we have the boundary condition at the origin
R () = constxr*. (2)
r=~0

In order to make this selection, and to discard the solu-
tion which behaves as »!*!, it is necessary to assume
that

7V 7, O 3)

that is, that the kinetic energy term dominates the
potential energy term as » goes to zero. If the potential
should be more singular than 1/#2 at the origin, then we
must investigate the equation more carefully: If this
singular potential is repulsive, then we conclude that
the correct solution to Eq. (1) does go to zero at the
origin, but in some fashion different from (2), and we
can proceed to do the usual sort of bound state and scat-
tering calculations; however, if this singular potential
is attractive at the origin, we are unable to make any
sensible solution to the equation. This latter situation
may be described by saying that the potential has an
infinite number of bound states going down to E= — o,

The borderline case, which we will study in detail,
involves the potential

V('r)r—:o—g/rz. (4)
If we put this into Eq. (1) and postulate the behavior
R,(r)r“_’o 7s, (5)

we get the indicial equation

-s(s+1)+1{l+1)~g=0 (6)
with the solutions
s*t=-3x[(+1/2) - g]/2, (7

We see that there is a critical value of the coupling
strength,

gt=+Q1+3P, (8)
such that if g<g*, the root s* describes the allowed

solution and the root s* describes the improper solu-
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tion—and everything is normal. However, if g> g*, then
then the two roots s are a pair of complex conjugate
numbers

s*t=-%1i0 (9)

and there is no apparent way to select the “good” from
the “bad” solutions., This situation is frequently de-
scribed by saying that we now have a continuous
spectrum (instead of a discrete spectrum for bound
states), due to the loss of our boundary condition at the
origin. Some insight into what has happened can be
gained by looking at the wavefunction;

R, (r)~ant/240 4 g_y-t /210
~Ar?/?sin(olnr+ ¢). (10)

As we trace this function down to »=0, starting from
any finite value of », we see that it has an infinite num-
ber of nodes; and its value at »= 0 is not defined,
although this wavefunction is still normalizeable in the
usual sense. The number of nodes in the solution to
Schrodinger’s equation at any given energy E is the
number of bound states that exist at energies below E;
thus we see here that there must be an infinity of bound
states below any value of E (the energy level spectrum
is bottomless, as well as topless).

In an attempt to make some sense out of this situa-
tion, Case?! applied the condition that two solutions of
the Schrodinger equation, belonging to different energy
eigenvalues, must be orthogonal. This is equivalent to
requiring that the Hamiltonian must be a Hermitian
operator, acting upon the proper wavefunctions, He thus
derived the condition, for any two solutions R and R’,

i ii_. ’ ’ Li._ —

lrl,r?rz(RdrR -R drR)_O' (11)
With solutions of the form given by Eq. (10) this condi-
tion reads

AA’osin(¢ - ¢*)=0, (12)

and this is satisfied by requiring the phase angle ¢ to be
the same for all states. This gives a discrete bound
state spectrum, but the number of bound states is still
infinite; furthermore, there is no way to determine the
phase angle ¢,

By taking the complete potential to be — g/#?, the
Schrodinger equation can be exactly solved in terms of
Bessel functions, and Case showed that the resulting
energy level formula was

Copyright © 1976 American Institute of Physics 863



E=E, exp(-2nn/0), (13)

where E; is a negative constant—depending on the angle
¢ and thus arbitrary —and the quantum number # is any
positive or negative integer or zero. {E,= -2 exp[2(¢

- 8)/0], where 6 is the phase of the gamma function of
argument 1 — o},

In addition to the infinity of bound states at energies
approaching minus infinity (n» — -~ <), the 1/7 potential
also has an infinity of bound states as the energy ap-
proaches zero, from below (n—+ «). These are really
two distinct phenomena: The first arises from the
singular nature of the potential at short distances; the
second arises from the very long tail of the potential
at large distances (reminiscent of the Coulomb poten-
tial). Only the first situation—the short distance singu-
larity —is of interest to us here; we shall imagine that
the potentials we are interested in fall off faster at large
distances so that there is a discrete cutoff to the bound
states as the binding energy lessens.

Other attempts have been made to handle the dif-
ficulty at »=0 2 but all these methods are artificial, and
we generally conclude that the potentials, singular as
1/#%, cannot be sensible if the strength exceeds the
critical value g*.

The situation of a marginally singular equation, such
as the 1/4® potential in the Schrodinger equation, will
occur in any differential equation when the number of
inverse powers of coordinate in the differential operator
is equalled by the number of inverse powers of the co-
ordinate in the potential. Thus this situation can be
found in the Dirac equation with a Coulomb potential, in
the Klein—Gordon equation with a Coulomb potential,?

and in several models of the Bethe—Salpeter equation. 3+*

It is sometimes said that there is a correspondence
between marginally singular equations and renormaliz-
able field theories. It is not clear precisely what is
meant by this statement, but the analogy is probably
that, as was shown by Case’s work, the divergence
difficulties in this marginally singular case can be
summarized in a single parameter,

ALMOST SINGULAR POTENTIALS

In this paper we will study a Schri)'dinger equation
model in which the potential is mathematically rigged so
as to be not singular, but with a small parameter which
will allow us to approach as a limit the marginally
singular situation. Two explicit forms for this are

v (r\° 14
Model I: V=4 (T) , (14)
Model II: V::P&[1+eln<—t>], (15)

¥q
=0+ .

No standard perturbation theory (expansion in power
series in ¢) will work here because of the singular nature
of the perturbing operators. Expressed another way,

the resulting formulas will not be analytic functions
about ¢ =0, and it is just from this nonanalytic behavior
that some of the most interesting features of this model
flow.
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The motivation for studying these models actually is
based on more than just a mathematical game. Accord-
ing to quantum field theory, potentials arise from the
exchange of virtual quanta. Thus, the exchange of a
Spin zero quantum of mass u is described by the
propagator

1/(g? - u2+ ge), (16)

where ¢ is the 4-vector momentum transfer. Making the
Fourier transform to coordinate space, we get a poten-
tial which behaves like exp(- uR) for large R (R is the
space—time distance between the two interacting parti-
cles), and behaves like 1/R? for small distances.

If one performs a time average on this relativistic
potential, the result is the familiar Yukawa potential
exp(- 1r)/¥. Letting u become zero, one has the famil-
iar Coulomb potential. Since we are chiefly interested
in behavior at small distances in coordinate space, we
want to concentrate on the large g behavior in momen-
tum space.

The single-quantum exchange is only the lowest order
field theory approximation to the complete interaction of
particles. The following are two familiar diagrams from
quantum electrodynamics, carried to a higher order of
approximation:

O O

The first diagram, single photon exchange, gives the
momentum space potential ~1/4%. The second diagram
is a vacuum polarization correction and the third is a
vertex correction., These contributions to the interac-
tion have been calculated, and, if one looks at the high
g behavior of the well known results,® they give cor -
rection factors to the single photon exchange of

[1 +%1n<n;12 )] and [1—%Inm71n(m‘£ )] resp.
(7

Looking at the Fourier transforms of these functions,
we see that the improved field theory potential behaves
at small distances as

_const

V~=pz— +const’ xR (18)

RZ’

which is like our Model II, Eq, {15). Another convenient
field theory model is fixed source meson theory. Here
one calculates the time independent potential between
two sources by usual Schrodinger perturbation theory
methods. In second order one gets the usval Yukawa
potential, behaving like 1/# at small 7. In fourth order
one finds terms which behave like (In#)/#; and in sixth
order we have found terms that behave like (In»)?/y. (If
one has purely scalar coupling in this fixed source
model, then all these more exotic potential terms
cancel out and the pure Yukawa formula is exact. How-
ever, with inclusion of spin and/or isotropic spin
couplings, then, these new potential terms do survive.)
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It is an interesting question to ask what the exact
small distance behavior of the complete (i.e., all
orders of perturbation theory) field theoretic potential
looks like, and we have no idea what the correct answer
is. Our Model I potential (14) may be looked upon as a
guess, taken as alternative to the perturbation theory
guess of Model II, (15).

SOLUTION OF MODEL |

We will solve for the lowest bound states of Eq. (1)
with the potential (14), With the change of variables,

,r:yz/e/zf_——i, R’:y'(l/“I/Z)u, (19)
the differential equation becomes
2L+ 1)/e]2-% 1
(_5:_ + {[( l yz)/e] 4 + _62_ y4/6-2);u=Au, (20)
where
A= (4g/) (27, V- E)C. (21)

[For =1 this is the transformation that reduces the
hydrogen atom to a harmonic oscillator, ] This looks

like a normal Schrodinger equation, having a very large
angular momentum; the effective potential (1/¢?)y*/¢*2 has
the following behavior in the limit €~ 0: For y <1 this
term vanishes, and for y>1 this term becomes positive
infinite. Thus we interpret this like an infinite potential
barrier and replace it with the familiar boundary
condition

u(y=1)=0. (22)

The remainder of the equation is solved in terms of
Bessel functions; the boundary condition at y =0 is that
u must vanish; and so we get the resulting eigenvalue
condition:

J(2,)=0, (23)
where
v={2l+1)/e and Z =A'72 (24)

From Jahnke and Emde® we have the following formula
for the zeroes of Bessel functions of very large order:

Z,=v+Ct 3+ D /3 + 0 ) (25)
no &, D,
1 1.8558 1.0332
2 3.2447 3.1584
3 4,3817 5,7598
Putting these results together, we have the energy
eigenvalue formula (for € =~ 0)
E=zyl—xp(z ‘“m—f/z?) exP (“ﬁ‘%?ﬁr/‘) -
(26)

We see that this formula becomes very singular in the
limit of e=0. The first exponential factor, which is the
same for all states, establishes the very large numeri-
cal scale of the eigenvalues. (Note that if g were less
than g*= (I + 3)?, then the sign in this exponent would
change and the limit would be £=0 instead of E= ~.)
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The second exponential factor gives us the structure of
the eigenvalue spectrum, This factor also is singular in
the limit of ¢=0 but not as strongly as the leading factor.
The rather bizarre dependence —exp(1/¢!/3®)—could
hardly have been anticipated. Thus we find that not only
the depth of the lowest eigenvalues, but their ratios as
well are governed by very large pure numbers produced
by the mathematics of this problem. Thus, for [=0,

E,/E, =exp(-5.6/¢'/%). 27

SOLUTION OF MODEL Il

Now we shall solve for the lowest bound states of Eq.
(1) with the potential (15). Here we start with the
transformations

R,=r'%, y=xv,, E=-Mr}, (28)
where

ri=roexp{- (1/ge)llg - (1 + 1/2)°}} (29)
to get the equation

2 1d Inx ) _

(c_i}“'—;é;_‘—ge xz -A)u=0. (30)
Next we write
x=exp[n/(ge)*/?], r=exp[-2u/(ge)*/?] (31)
to get
(;1%22—+71-(g€)'2/39XP[2(77-—u)/(ge)”S])u:O. (32)

This is looked upon similarly to Eq. (20) in that the last
term behaves, in the limit of ¢ =0, like an infinite
potential barrier at 7= pu. Therefore, we need only
solve the equation

(&
-— + =0
Lo vn)otw) (53)
with the boundary conditions

v(-==)=0, v(n=p,)=0, (34)
to get our eigenvalues

1 2 1y2 2 iy

En—",,oz exp(ge [g-(l+z)]——(§aT/a— (85)

Equation (33) may be solved in terms of Bessel
functions; with the required boundary condition at n—
- (y=0), we find

v=An2[J, Gt B + Iy, G0° D). (36)
Thus the values (, are just the zeroes of this tabulated
function. Actually, if one looks at the derivation of the
earlier quoted formula (25) for the zeroes of Bessel
functions of large order,” it is found that the exponential
transformation (31) is involved, leading to the same
Eq. (33) that we are now studying. The resulting iden-
tification is
11,1:21/30,l (37)
in terms of the coefficients given earlier. The energy
formulas for the two models are quite similar in
structure,
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SOLUTION OF A GENERALIZED MODEL

The similarity in results of these two models sug-
gest that we try to solve the generalized almost singular
potential,

V=~(g/v*)fr),

where the modifying factor f is very close to unity,
except at very small distances. With the transformation
R=y""% we write

(38)

(—3—’%7%+U—E>u=0, (39)
where
U=[(+1/22 - g}/ . (40)

We assume that g> ¢* and also that f is such as to make
the potential less attractive at very small distances.
Thus U is positive at small » and negative at large ».
We identify the point where U passes through zero as r,,
and then we write

Ulr)=0, r=ré, E=-71§-exp(-zx), (a1)
. 1
& W(0) ~ exp[2(6 < 0] Yu=0 42
d92 ~ exp ( - ]u— ’ ( )
where
W=-7U= -+ 5¥+ g flr,e. (43)

Now we expand about 6==0, where U, and therefore
W, vanishes:

W=ab+ 0(a26?). (44)

The parameter « is assumed to be very small, as in
our previous models it is proportional to e. One more
variable change

6=na’/® r=pal/® (45)

and we have

2 -
[Edn?+n+0(a2/3n2)-—a'2/3exp(2—(gﬂ-3y-)—)]u:O, (46)
and so in the limit of &« — 0 we have the earlier solution
(33), (34).

We can actually do a little bit better by watching more
closely what happens around the point n=u, that is, at

r=r exp(p/a'’? =vr,. (47)

By matching solutions of the equation approaching this
barrier from both sides we pick up one more correction
term to the energy, and our final formula is
1 24/3¢C
E":-.y—lz—exp(—-—a—ﬂgn—+2(ln2—-0)), (48)
where C is Euler’s constant. This formula reproduces

the two earlier results as special cases—except for the
last factor, which was lacking before.

DESCRIPTION OF THE WAVEFUNCTIONS

The several transformations of variables may ob-
scure the picture of what the eigenfunctions for these
deeply bound states look like. The wavefunction goes to
zero at the origin and has its first turning point at the
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very small distance »,. Then it may oscillate; finally it
has its second turning point at », -~ which is still a very
small distance compared to the basic unit of length, »,,
but is a rather large distance compared to », (see (47)).
Furthermore the distance 7, will be very strongly de-
pendent on the quantum number #, for example

rylfor n=2)/r,(for n=1)=exp(y, - u,)/ a*/3

We also note that the tail of the function decays with
length »,, Pictures of the functions will look as follows:

R(l)
1 L T
Y1 7,

R(Z)
+—]A 1 r
T ~——e— 7y

7

The functions are, of course, orthogonal to one another:
but there is a more interesting property contained here.
If one should have some reasonably smooth operator
(such as a dipole length) and calculate its matrix element
between these two states, the result will be a small
number —depending on the ratio of the distances »,—due
to the great disparity in the spatial extent of the two
wavefunctions.

Thus a transition rate between the nth state and the
mth state (m less than n) would be characterized by the
small number:

(m)7] 3 ~ ~5.25
G*= [:z(m] —men?, eXD("T 5 >,
2
a::lO'l, G?=10°
a:lO'z, G2=~10"1,
a:10‘3, G?~10"%,

CONCLUSIONS

This study of almost singular potentials in the
Schrodinger equation has led to some interesting results
and suggests some interesting ideas for future study.
The small parameter built into the model (called ¢ or
@) allows us to construct solutions without introducing
a cutoff or similar device; the answers can be expanded
for small values of this parameter, although it is not a
power series expansion. The resulting energy level
spectrum is characterized by very large numbers—re-
sulting from an exponentiation of the small parameter
originally introduced—and the same is found for the
overlap of the wavefunctions that would occur in any
calculation of transition probabilities under some
external interaction. These general features are char-
acteristic of the basic properties of elementary parti-
cles: large ratios of masses (as between baryons and
leptons) and severe heirarchy of interactions (strong,
weak).

A next step should be to explore the behavior of al-
most singular potentials in the context of some relativis-
tic equations, rather than the Schrodinger equation, One
immediate problem will be the following: in the above
study the energy E took on very large negative values;
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By definition simple pseudo Lie algebras do not contain any nontrivial ideal. We show that “graded
simplicity” implies “simplicity” and discuss the uniqueness of invariant bilinear forms on a simple pseudo
Lie algebra. A lot of examples of simple pseudo Lie algebras is given together with their invariant bilinear
forms. Under certain general assumptions we derive that the Lie algebra 8 contained in a simple pseudo
Lie algebra a is reductive. Assuming that § is reductive, we prove that the “adjoint representation of ¢ in
the odd subspace of a ” is completely reducible with at most two irreducible components. Finally we show
that the pseudo Lie algebras with nondegenerate “generalized Killing form” are direct products of simple

pseudo Lie algebras.

1. INTRODUCTION

Recently there has been a remarkable interest in
pseudo Lie algebras (or, as they are also called, graded
Lie algebras, ! both in the physical and in the mathe-
matical literature. There is no need to establish a list
of references since this has been done to a considerable
extent in a recent article by Corwin, Ne’eman, and
Sternberg. ?

Despite of the interest in these algebras the literature
devoted to a systematic study of the structure of pseudo
Lie algebras seems to be rather limited (at least to the
knowledge of the authors).

It can be shown® that many of the elementary con-
structions with Lie algebras and especially with their
representations and their universal enveloping algebras
(for example tensor products of representations, rep-
resentations in spaces of linear mappings, representa-
tions on spaces of multilinear forms,..., and the
theorem of Poincaré, Birkhoff, and Witt) can be adapted
rather directly to pseudo Lie algebras. Nevertheless
there are sufficiently many examples which show that
the theory of pseudo Lie algebras is not merely a tran-
scription of the theory of Lie algebras.

To get some insight into the structure of pseudo Lie
algebras we have decided to study the class of simple
pseudo Lie algebras, with the hope that—as in the case
of Lie algebras—the assumption of simplicity might be
strong enough to enable a lucid theory.

Our paper is arranged as follows. In the next section
we introduce our notational conventions and give some
definitions concerning the representations of pseudo Lie
algebras. Section 3 contains some elementary proper-
ties of simple pseudo Lie algebras. We show that
“graded simplicity” implies “simplicity” and discuss
the uniqueness of invariant bilinear forms on a simple
pseudo Lie algebra over an algebraically closed field.
Section 4 contains a lot of examples of simple pseudo
Lie algebras and their invariant bilinear forms. These
algebras are to some extent analogous to the classical
simple Lie algebras. We hope that this stack of exam-
ples might be sufficiently rich to lead to realistic hy-
potheses concerning the general structure of simple
pseudo Lie algebras.
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For any pseudo Lie algebra « the even subspace g of
a (which is an ordinary Lie alge?ra) has a natural rep-
resentation in the odd subspace u of a . In Sec. 5 we
prove (partly under certain additional assumptions) that
this representation is completely reducible with at most
two irreducible components. Presumably, our results
constitute a reasonable starting-point for a classifica-
tion of simple pseudo Lie algebras (over an algebraical-
ly closed field). This is explained in Sec. 6.

We do not try to give a definition of semisimple
pseudo Lie algebras. Presumably any simple pseudo Lie
algebra should be semisimple. Therefore we prefer to
wait until our knowledge of simple pseudo Lie algebras
has been improved. In any case the pseudo Lie algebras
with nondegenerate “generalized Killing form” are to
be considered as semisimple, for we prove in Sec., 7
that these algebras are direct products of simple pseudo
Lie algebras.

2. PRELIMINARY REMARKS AND NOTATIONAL
CONVENTIONS

Pseudo Lie algebras are a special type of graded
(nonassociative) algebras, whose multiplication behaves
partly as a commutator and partly as an
anticommutator.

(a) In order to be able to give a precise definition
(see also Ref. 2) we have to remind the reader of the
concepts of graded vector spaces® and graded algebras.®
In this paper we shall be concerned only with gradings
with values in the additive two element group Z,=27/2Z.
Correspondingly, a vector space V will be called
graded, if for each of the two elements 0 and 1 of Z,
there is given a subspace V; resp. V, of ¥V such that V
is the direct sum of V; and V|,

(2.1)

The elements of V, (resp. V;) are called even (resp.
odd). An element X of V is called homogeneous if it is
even or odd, i.e., if Xe VUV,

V=V, ®V,.

(b) The grading of ¥V may be described by the linear
map

yy:V=V (2.2a)
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defined by

yAX+Y)=X-Y if XV, YeV,. (2.2b)

We call y, the grading automorphism of V.

For any Z & V the elements 3[Z +y,(Z)] resp.
4[Z ~y,(Z)] are the uniquely determined elements Z,
€ V, resp. Z, € V, such that Z= 7%, +Z,. They are called
the even resp. odd component of Z.

(c) A subspace U of V is called graded if

U=(Unv,)+Unv), (2.3)

i.e., if for every element Z < U its even and odd com~
ponents belong to U, i.e., if y (U)CU.

(d)If V=V, &V, and V' = V@ V] are two graded vec-
tor spaces then there is a natural procedure to define
a grading of the tensor product V® V', of the vector
space /[(V, V') of linear mappings from V into V', of
the vector space A(V, V') of bilinear forms on
VXV, ... In fact if £ (V, V') [resp. [,(V, V')] denotes
the subspace of even (resp. odd) linear mappings, then

LoV, V)={ge L(V,V)|g(V)) C V5, gV Vi,

LV, V) ={ge L(V,V)]g(V,)C V], g(V)c Vi,

and if B,(V, V') [resp. B8,(V, V’}]| denotes the subspace of
even (resp. odd) bilinear forms, then

(2.4)

BoV, V)
={p € BV, V)| ¢(Vo x V) = p(V, x V) ={0}}
BAV, V)
={o € AV, V)| ¢V, x V§) = o(V, x V]) ={0}}.

(e) An algebra L is called graded if it is graded as a
vector space

L=L,®L,

(2.5)

(2.6)

and if the usual rules for the “multiplication of even and
odd elements” are satisfied, i.e., if

L,LyCL,., a,B€Z, 2.7

A homomorphism of a graded algebra L into a graded
algebra L’ is by convention always even (as a linear
map).

It is easy to check that the grading automorphism y
(=y.) of L is in fact an automorphism of the algebra L,
i.e.,

v(AB)=v(A)W(B) ifA,BeL. (2.8)

(f) To give a concise definition of a pseudo Lie algebra
we need the concept of a commutation factor. ® This is
(in the present paper) the map

€:Z,XZ,~ Z (2.9a)
defined by
o, B)=(-1)**, a,BecZ,. (2.9b)

(g) A pseudo Lie algebra is then a graded {nonasso-
ciative) algebra L =L,® L, whose multiplication (de-
noted by a bracket { , )) obeys the following identities:

(4,B) = ~¢(a, H{B,A), (2.10)
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(A, B),C)=(4,(B,0)) —¢(a, B){B,(4,C) (2.11)

(generalized Jacobi identity),
ifAeL,, BeL,, CeL, a,Bc Z,

Observe that L, (with the multiplication inherited from
L) is an ordinary Lie algebra.

We shall always assume that L, +# {0}.

(h) An important class of examples of pseudo Lie
algebras is the following. Choose any graded vector
space V="V,& V,. Then the associative algebra /[ (V) of
linear mappings of V into itself is also graded. Define
a bracket operation on /(V) by

<A,B> :AB—G(Qy B)BAy (2~12)

ifAc/ V), Be/[V), a,Be Z,. Then the vector space
£ (V) equipped with this multiplication is a pseudo Lie
algebra which we shall denote by pl(V) and which plays
much the same role in the theory of pseudo Lie algebras
as g1{V) does in the theory of ordinary Lie algebras.

(j) Suppose L is a pseudo Lie algebra and Vis a
graded vector space. A graded representation of L in
V is by definition a homomorphism of L into pl(V),
normally denoted by

A—A, AclL. (2.13)
It is obvious from (2.11) that the map

ad; : L— pl(L) (2.14a)
defined by

ad (AXB)=(4,B) (2.14b)

is a graded representation of the pseudo Lie algebra L
in the graded vector space L, called the adjoint repre-
sentation of L.

(k) The restriction of ad; to L, is a representation of
the Lie algebra L, in L, therefore we can speak of L~
invariant (L,-irreducible, - --) subspaces of L. If Vis
an Ly-invariant subspace of L, then the representation
of L, in V induced by ad; will be called the adjoint rep-
resentation of L, in V.

The Jacobi identity (2.11) shows that multiplication
is an L,-invariant bilinear map of L XL into L. Hence
if U and V are two L,-invariant subspaces of L, then
(U, V) is L,-invariant, too. (Recall that according to
common usage, (U, V) denotes the subspace of L gener-
ated by all elements of the form {4,B), Ac U, BeV,

(1) Suppose we are given two graded representations
of L in two graded vector spaces V and V', respective-
ly. Then there are natural definitions® of graded repre-
sentations of L in V® V’, [(V, V'), B(V, V'), ++-. In
the second case one defines

(ALg)=A,og—€ela,y)g-A, (2.15)
ifAeL,, g/, o,y<€ Z,, and in the third case
(ABSNX, V)= c(a, 1)$(A, X, V)
—ela,p +£)O(X,A,.Y) (2.16)

ifAeL,, ¢pcfBy, XV, YEV', a,9,tc Z,.

(m) Given a graded representation of a pseudo Lie
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algebra L in a graded vector space V, an element Xe V
is called invariant (with respect to this representation)
if

A,X=0 forall AcL. 2.17)

If X is invariant then its even and odd component are
invariant, too.

{n) It is now natural to look for invariant bilinear
forms on L, and especially to ask: Suppose we are given
a graded representation of a pseudo Lie algebra L ina
finite dimensional graded vector space V. Can we asso-
ciate with this representation an invariant bilinear form
on L (just as in the case of Lie algebras)?

This can in fact be done,® for if y, is the grading
automorphism of V, then the bilinear form ¢, on L
defined by

¢,(A,B)=tr(y,A,B,), A,BeL (2.18)
is invariant. Note that ¢, is even and that
oA, BY=¢la, B) ¢ (B,4) (2.19)

ifAelL,, BeL,, a,BcZ,.

If L is finite dimensional we can consider the adjoint
representation of L and obtain an even invariant bilinear
form ¢ on L which we call the Killing form of L. (This
form has been found independently by Pais and
Rittenberg. ")

We remark that the procedure above also works in the
case of higher multilinear forms and that it is easy to
find the corresponding invariants in the universal
enveloping algebra of L, provided there is an even non-
degenerate invariant bilinear form on L.

(p) After these general remarks it is useful (to avoid
indices) to modify the notation for pseudo Lie algebras.
In the following a pseudo Lie algebra will normally be
called a and the even (resp. odd) subspace of a will be
denoted by 8 (resp. ¥ ),

e=g®i,s {0} (2.20)

Then g is an ordinary Lie algebra.

From now on all vector spaces and algebras are sup-
posed to be finite dimensional over a field K of charac-
teristic zero.

3. DEFINITION AND ELEMENTARY PROPERTIES
OF SIMPLE PSEUDO LIE ALGEBRAS

Apart from minor modifications an algebra L is
called simple if it does not contain any nontrivial {i.e.,
different from {0} and L) ideal. In the case of graded
algebras one can also restrict the attention to the
graded ideals [see Sec. 2. (c)] of the algebra; then the
concept of graded simplicity emerges. For pseudo Lie
algebras there is no difference between these two stand-
points, because we have the following proposition.

Proposition 1: Suppose that ¢« =g¢$ i is a pseuso Lie
algebra without nontrivial graded ideals. Then a does
not contain any nontrivial left or right ideal,

Proof: We remark that any graded left (or right) ideal
of a pseudo Lie algebra is in fact a two sided ideal.
Suppose now that f is a left ideal of a, different from
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{0} and a. If v is the grading automorphism of e [see
Sec. 2. (b),(e)], then ¥(i) is a left ideal, too; therefore
f+y(f) andf Ny(f) are graded left (hence two sided)
ideals of a, and consequently

f+y(D=a, 1 ny(t)={0}. (3.1)
Then, clearly,

s={H +y(H)|Hei},

i {H =) | Het ) 3.2)
Now we define a linear map

T:o—~a (3.3a)
by T(H)=H, Ty(H)=—-y(H) itHef. (3.3p)
Then

T?=1id (3.4)
(hence 7 is bijective) and

(o) =1, 7(d)=s. (3.5)

Finally [since f and y(f) are left ideals] it is easy to
check that 7 commutes with the adjoint representation
of a, that is

T{A,B))=(A,7(B)), A,Bca. (3.6)

But a map 7 with these properties cannot exist. In
fact, if X, Y<c4g, then
(r(X), (Y)) = 1(7(X), ¥)) = = 7Y, T(X)))
=-7XY,X)=(X, Y). (3.7)
This equation yields
(X,7)=0 (3.8)

if X, Y€ a are both even or both odd. If one of the ele-
ments X, Y< a is even and the other is odd, then X and
7(Y) have the same degree and therefore

(X, V)) =(X, 7(Y)) =0, (3.9)
hence (X, ¥) =0 in this case, too. This means
(a,a) ={0}. (3.10)

But then g and & are graded ideals in « and it follows at
once that g =i ={0}, contrary to the assumption that f

is different from {0}. The case of right ideals is treated
similarly, or one can use the fact that the graded vector
space s« equipped with the {opposed) multiplication
(A,B)—~(B,A) is a pseudo Lie algebra, too. Thus we
can give the following definition.

Definition: A pseudo Lie algebra a is called simple if
it does not contain any nontrivial ideal, and if {a,a)

+{0}.

The last condition serves to eliminate the trivial one-
dimensional pseudo Lie algebra. The definition yields
at once the following lemma.

Lemma 1: Leta =g @ il be a simple pseudo Lie algebra
(recall that we suppose % #{0}). Then:

(@) (§,8) =9;

(B) (G:ﬁ) =i,

W. Nahm and M. Scheunert 870



(y) the adjoint representation adiiof 8 in i [see
Sec. 2. (k)] is faithful;

(8) if ¢ is a homogeneous (i.e., even odd) invariant
bilinear form [see Sec. 2. (1),(m)] on , then
either ¢ =0 or ¢ is nondegenerate;

(¢) If v is the grading automorphism of a, then
tr(yadeX)=0 for all Xeg.

In fact, for any pseudo Lie algebra a =¢ © u and any
homogeneous invariant bilinear form ¢ on e, the follow-
ing four sets are (graded) ideals of a:

fa:<i’§>@ﬁ’ fg :9$<G;;>,

i,={Ac¢|(A,B)=0 for all Beil, (3.11)
fs={Aca|¢(B,A)=0 forall Beal.

Finally, if A, Bci, then

tr(yad((4, B))]
=tr[y(adA)adB)] +tr[y(adB)(adA)]=0 (3.12)

since adA anticommutes with y. Therefore, () follows
from (o). Concerning the invariant bilinear forms on
simple pseudo Lie algebras we prove the following
proposition.

Proposition 2: Suppose that K is algebraically closed
and that a = ¢ u is a simple pseudo Lie algebra (over
K). Then all invariant bilinear forms on & are propor-
tional and hence homogeneous of the same degree.

Proof: Let ¢ and ¢’ be two invariant bilinear forms
on a. Then the even and odd components of ¢ and ¢’ are
also invariant. Therefore we may assume that ¢ and ¢’
are homogeneous; let § (resp. ') be the degree of ¢
(resp. ¢7).

The cases ¢ =0 or ¢’ =0 are trivial, hence (see
Lemma 1(56)] we suppose that ¢ and ¢’ are nondegen-
erate. Then there is a linear map ¢: a — a such that

¢'(A,B)=d(c(A),B) forall A,Bca. (3.13)
It is easy to prove that ¢ is a homogeneous linear bijec-

tive map of degree i +¢’. From the invariance of ¢ and
#’ it follows that [see Sec. 2. ()]

U(<A, B>) :E(a’ d) +d),)<A: U(B»

if A € o is homogeneous of degree « and if Be a is
arbitrary.

(3.14)

Let us now first assume that ¢ and ¢’ have the same
degree, i.e., that y + " =0. Then ¢ is an even linear
map of a into itself. Let S be an eigenvalue of ¢ and
define

f={Bca|o(B)=sB}. (3.15)

Since o is even, f is a graded subspace of s, and from
(3.14) it follows that

o((4,B))=(A,0(B)) =s(A, B) (3.16)
forall Aca, Bei, i.e.,fis a graded ideal of a.
Therefore f = a and

¢'(A,B)=s ¢(4, B) (3.17)
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for all A,Beas.

Let us now assume that ¢ and ¢’ have different de-
grees. We define a bilinear form ¢” ona by

¢"(A,B)=¢(c*(A),B), A,Bca.

Then ¢” is nondegenerate and has the same degree as
¢. Furthermore, it is easy to check that ¢” is invari-
ant. According to what we have just proved there is,
therefore, a constant € K, {#0, such that

(3.18)

o?=tid. (3.19)
From (3.14) we know that
o((A, B))=¢(a,1){4, 0(B) (3.20)

if A € a is homogeneous of degree o and Be< « is arbi-
trary. If y is the grading automorphism of a [see Sec.
2. (b), (e)], this equation is equivalent to

o((4, B)) =(y(A), o(B)) (3.21)
for all A,Bec a. It follows that
(oo¥)(4, B))=0((y(A),y(B))
=(A,(o.¥)B)). (3.22)
Now we define
T=(1/yV=Foey (3.23)

(where v=7 is one of the two square roots of —¢). Then
7 is an odd linear bijective map of a onto itself such
that

T((A,B))=(A,7(B)) for all A,Bca,

T =id.

(3.24)
(3.25)

But from the proof of Proposition 1 we know that this
leads to a contradiction. The proposition is proved.

Remark: As we shall see in the next section, the
study of invariant bilinear forms on a simple pseudo Lie
algebra a is more complicated than the corresponding
problem for Lie algebras.

In fact, the following four situations all do occur:

(I) the Killing form [see Sec. 2. (n)] of a is
nondegenerate;

(I1) the Killing form of a is zero but there exist
nondegenerate even invariant bilinear forms on

a,

(III) the Killing form of « is zero but there exist
nondegenerate odd invariant bilinear forms on s ;

(IV) there is no nonzero invariant bilinear form ona.

4. EXAMPLES OF SIMPLE PSEUDO LIE ALGEBRAS
AND THEIR INVARIANT BILINEAR FORMS

Before we shall derive some general theorems on the
structure of simple pseudo Lie algebras it will be help-
ful to have at our disposal a stock of examples, since
on one hand they may give some advice in obtaining
realistic hypotheses and on the other hand they may
serve to illustrate our theorems. Most of the results
of this section have been obtained by direct calculation.
Since this is sometimes a bit cumbersome and does not
give any further insight, we omit all the details.
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Our starting point is the general pseudo Lie algebra
pl(V) [see Sec. 2. (h)]. We choose

V=K"® K™, (4.1)

with K" the even and K™ the odd subspace of V. 1t is then
natural to write pl(z,m) instead of pl(K"® K™). The
elements X of pl(n,m) are (or rather may be identified
with) (n +m)X{n +m) matrices and will be written in
block form

A B)
X:
C 5
with A an arbitrary # X» matrix, B an arbitrary nXm
matrix, C an arbitrary m X» matrix, and D an arbitrary

m Xm matrix. If X' =(£ 2} is a second element of
pl{n, m), then

(X, X
*(AA' -A’A+BC' +B'C BD'-B'D +AB’ -A’B)

n,mz1

(4.2)

"\CA'-C'A+DC'-D'C DD'-D'D+CB’ +C'B
(4.3)
It is obvious that the mapping
(A B) _’(D c)
CD B A

is an isomorphism of pl{xn, m) onto pl(m,x).

(4.4)

(a) Evidently, all elements (X, X"); X, X’ € pl(n, m),
are of the form (& 8) with tr(4) =tr(D). Hence we may
define a pseudo Lie algebra spl(n, m) by

B
spl(n, m):{(‘é D) € pl(n, m) [tr(A):tr(D)}. (4.5)

We remark that the algebra spl(n,n) does contain the

unit matrix; it generates a one-dimensional ideal of

spl(n,n) which turns out to be the center of spl(z,#) and
will be denoted by & n-

By direct calculation we obtain the following results:
(1) the algebras spl(n, m) with n# m are simple;

(ii) if »> 2, the only nontrivial (left) ideal of spl(x,n)
is ;,, hence the quotient algebra spl(n,n)/s , is
simple;

(iii) the (left) ideals of spl(1,1) which are different
from {0} are the subspaces of spl(l, 1) which
contain ;;.

Let v, be the grading automorphism of V=K"® K",

Then we know that
(X, ¥)—1tr(y ,XY) (4.6)

is an even invariant bilinear form on pl(x, m) and on
spl(n, m).

The Killing form of pl(z,m) is found to be

(X, V)= 2(m—m)tr(y, XV) =2trly, X)tr(y, V), (4.7)
hence the Killing form of spl(n, m) is
(X, Y)—2(n —m)trly, XY). (4.8)

It follows that the Killing form of spl(n,n)/;, is zero.
Nevertheless, by going to the quotient, the invariant
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bilinear form (4. 6) on spl(n,#) furnishes a nondegener-
ate invariant even bilinear form on spl{n, n)/; ..

(b) Suppose now that we are given a bilinear form ¥
on V=K"® K™ and let us consider the set of all elements
of pl(n, m) that leave ¥ invariant [see Sec. 2. (1), (m)].
If ¥ is homogeneous then it is easy to see that this set
is a subalgebra of pl(z,m).

In the following we write the elements of V in the
form of pairs (x, y) with two column vectors x € K" and
ye K™,

{c) We consider first the case where ¥ is even.
Then ¥ has the form
T((xy, ¥1), (x5, ¥,)) = tx; M%x, + by, M™y, (4.9)
with an » X» matrix M* and an m Xm matrix M"™,

An element (£ ) € pl{n, m) leaves ¥ invariant if and only
if
tAMSE + M5SA =0,
{CM"™ +M#*B=0,

tBMs’g - Muuc — O,

tDM™ +M"D =0, (4.10)
It is now appropriate to choose M* and M" nondegener-
ate and one of them symmetric, the other skew-
symmetric.

Hence let m,p = 1 be any positive integers and let n=2p.
Choose

Mu:c:(_olD é@), M=, (4.11)
where I, denotes the k-dimensional unit matrix,
Then our conditions read
'AG+GA =0, 'D+D=0, C='BG. (4.12)

Let o« (2p, m) be the subalgebra of pl(2p, m) described by
these conditions. The first equation says that A is an
element of the symplectic Lie algebra sp(2p) and the
second condition demands D to be an element of the
orthogonal Lie algebra o(m).

In a more detailed investigation it might be advanta-
geous to distinguish between the cases where m is odd
or even and to choose for M*™ the symmetric matrices
well known from the discussion of the simple Lie alge-~
bras of types B, or D,. But we would like to stress that
the cases m =1 and m =2 are not excluded.

With these definitions we have shown that:

(i) All pseudo Lie algebras a(2p,m); p,m>1, are
simple;

(ii) The bilinear form ona (2p, m),

(X, V)= trly, XY), (4.13)
is even, nondegenerate, and invariant.
(iii) The Killing form of « (2p, m) is equal to
(X, V)= (2p —m +2)trly, XV). (4.14)
(d) Next we consider the case where ¥ is odd.
Then ¥ has the form
W((x,, ¥1), (%, ¥2)) =, My, + Ty, M¥x, (4.15)
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with an » Xm matrix M®™ and an m Xn matrix M*¢, An
element (2 ) ¢ pl(n, m) leaves ¥ invariant if and only if

tAM® +M*“D=0, ‘BM* -M"B=0,

tCM" + MS“C =0, ‘DM"s+M"$A =0, (4.16)
It is then appropriate to choose

MYE =t Mo, (4.17)
Suppose now n=m > 1 and

M®=M“¥=1I,. (4.18)
Then our conditions read

‘A+D=0, '‘B-B=0, 'C+C=0, (4.19)

Evidently an element of pl(n,n) satisfying these condi-
tions lies in spl(n,n) if and only if tr(4) =0, i.e., if and
only if A € sl{z). Hence we define a subalgebra b (r) of
spl{n, n) by

b(n):{(‘é _iD{tr(A):O, ‘B=B, fc:-c}, {4.20)

where A, B,C are nXn matrices.
The case n=1 is trivial. For n> 2 we have shown:

(i) If n=> 3, then the pseudo Lie algebra b (n) is simple
and there is no nonzero invariant bilinear form on
b(n);

(ii) the only nontrivial (left) ideal of 5(2) consists
(in the notation introduced above) of those ele-
ments of b(2) for which C=0;

(iii) all invariant bilinear forms on 5 (2) are even and
degenerate.

{e) Suppose finally that m =7 and consider the set of
all matrices (4 3) e pl(n,n) with A =D and B=C.* It is
easy to see that this set is a subalgebra of spl(x,n),
namely the subalgebra of all elements of pl{z,n) that
leave invariant [see Sec. 2. (1),(m)] the odd linear map
of Vinto itself, described by the matrix (%, ). If X, X’
are two elements of this subalgebra, then (X, X’) has
the form (5 8) with tr(B)=0.

Hence we define a subalgebra b, of spl(n,n) by

n":{(‘ B) {Aegl(n), Besln) -

BA (4.21)

Evidently ; ,[as defined in (a)] is contained in» ,. To
simplify the notation we write (A, B) instead of (} 3).

The case n=1 is trivial. For #=> 2 we have shown:

(i) If n= 3 then; , is the only nontrivial (left) ideal of
»»- The nonzero invariant bilinear forms on b, are
odd and proportional to

((4,B),(A’,B')— tr(AB’ + BA"). (4.22)

(ii) The algebras , contains a second nontrivial (left)
ideal besides ; , namely
{0, B)|x €K, Besl(2)} (4.23)

(iii) The even (resp. odd) invariant bilinear forms on
»2 are proportional to
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((‘A;B)) (AlyB’))_’ tI‘(AA’) "% tI‘(A)tI’(A’)
[resp. ((A,B),(A’,B')—~tr(AB’ +BA’)|.

From this we conclude: Suppose # > 3. Then the
quotient algebra b ,/;, is simple. Going to the quotient
the odd invariant bilinear form (4.22) yields a non-
degenerate odd invariant bilinear form on»,/;,. Conse-
quently, there cannot exist any nonzero even invariant
bilinear form on »,/;,, especially the Killing form of
v,/s, 1S equal to zero.

The algebras v ,/s, are the (f,d) algebras of Gell-
mann, Michel, and Radicati.?®

(4,24)

5. ON THE COMPLETE REDUCIBILITY OF THE
ADJOINT REPRESENTATION OF ¢ IN &

The examples of the preceding section have the fol-
lowing property in common: The adjoint representation
of g in i [see Sec. 2.(k)] is either irreducible or it is
the direct sum of two irreducible representations. In
this section we shall show (partly under additional
assumptions on 9 and K) that this is a general property
of simple pseudo Lie algebras. We begin with the
following theorem.

Theovem 1: Leta =g®u be a simple pseudo Lie alge-
bra. Suppose that u is the sum

(5.1)

of two s ~-invariant subspacesu ; and u,, both different
fromu . Then the sum is direct, i.e.,

;lm ;2:{0},

and the adjoint representations of g4 ina, and u, are
irreducible. Furthermore we have

v o o
U=u, *tu,

(5.2)

<;1,;1>:<;2,;2>:{0}, <;;,;2>:ﬂ. (5.3)

Proof: We start with a lemma,

Lemma 2: Let « =g ®u be a simple pseudo Lie alge-
bra. Suppose that u is the direct sum

B, DD, (5.4)

of ¢ -invariant subspacesi,, ++, u,, all different from
{0}. Then =1 or »=2, and in the case »=2 we have
(5.3).

Proof of Lemma 2: The case =1 is trivial., Let us
consider the case »=2; once this case has been settled
the rest will follow immediately. We shall prove that

F=Cyu0 @G, Gy u) (5.5)

is an ideal of a.

Evidently { is g -invariant [see Sec. 2. (k)];
furthermore

<;{1,<:‘1;;1>>C<;1:8>C;1, (5.6)

hence f is invariant under adi .
1
Finally

<§2,<§ 1);1>)C<;2,q>,ciz; (5-7)
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and on the other hand
iy (il gy 000 C (i, 0,5 ) i, Gigy it )
ey )+ 1) iy 5.8)
hence
ity (B, 8 ) ={0}
and therefore
gy iy, Gt gy 8 00) T gy 5 (it w0
(e, u?
Clu,up, {5.10)

i.e., f is invariant under ad Ez.

(5.9)

Since evidently f # a we conclude that
(i, 5 ) =1{0}
and similarly {i,, @ ,) =10}, (5.11)
hence [see Lemma 1{a)]
(uy,up) =(,u)=g. (5.12)

Ifnowvr23and if ke{l,...,7}, then

=00 @ (5.13)

and the case =2 yields

<2 uw;, % u].):{o}. (5.14)
It follows that

(% w,)=10} forall 4, jei{l,...,r} {(5.15)
that is

(a, uy={0}, (5.16)

contrary to the assumption that a is simple [see Lemma

1(aj].

Let us now come to the main proof. If u;, i=1,2,
are the g -invariant subspaces of u mentioned in the
theorem, then we define

1

-0

o VI
=4, ;=08 ny=uy,

B

[

v o uoneny 5.17
wi=(i,u}) ifn=2, ( )
It is easy to see that for all n= -1
u7 is ¢ -invariant, (5.18)
(v, 87 iy, (5.19)
wiican, (5.20)

From (5.20) we deduce that there is an integer k> 1
such that

%h-rz' (5‘21)

Using (5.18) and (5.19) it is then obvious that a5*®u?"
is an ideal of &, hence equal to zero. We conclude that

i {0} (5.22)

if the positive integer # is sufficiently large.

Now we define for each integer 1= 0
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1
“;:E (iiu'“ﬂ ;gk))

'1;:2(;12(1-k)*1mﬁgk-1)’ (5.23)

%70
f.=1i®¢%.

It is easy to see [using (5.18), (5.19) and (5.1)] that
f, is an ideal of a, for every /= 0. We remark that

fg:g, fg:;l“("l:z:;. (5.24)
Evidently
fYC(EP +u)n(u, +udh). (5.25)

Therefore if 32! ={0} or %" ={0} (and this will happen
for sufficiently large I), thenf %# x and consequently
t,={0}. Now let L be the smallest of the integers />1
such that

w2 o} f 1<k <], (5.26)

Then on the one hand 124~ and u%:"! are different from
{0}, since otherwise f ,_, ={0} and therefore L would
not be minimal. In particular we conclude that f ;_, =4,
hence f %_, =u. But on the other hand it follows from
(5.26) that the sum defining f % _, is direct. Since we
already known that the two terms u 22-* and 22%-! of this
sum are not equal to {0}, Lemma 2 shows that all the
remaining terms be equal to {0}. It follows that L =1,
for otherwise L would not be minimal.

Thus we have shown that { %= is the direct sum of
#, and u,. It is now evident that i , and & , areq -
irreducible. For suppose for instance thatu /is a g -
invariant subspace of i , different from u,. Then we
can apply the result just proved to w, and ¢ , + 4, and
see that the sum of these two subspaces of ¥ must be
direct, that is u /={0}.

The theorem is completely proved.

Covollary: Under the conditions of Theorem 1 the
Lie algebra g is reductive (i.e., ¢ is the direct product
of a2 semisimple with an abelian Lie algebra).

Pyoof: In fact, ¢ has a faithful completely reducible
representation, °

It is instructive to state Theorem 1 in the following
equivalent form:

Leta =g® u be a simple pseudo Lie algebra. Then
either u is the direct sum of two ¢ -irreducible sub-
spacesi, and i , which satisfy the equations (5.1) or
else there exists a unique maximal ¢ -invariant proper
subspace i , of 4.

Of course in the second case one would like to know
whether in fact i,={0}, i.e., whether » must be g -
irreducible. If this would be true, then we could con-
clude that generally the Lie algebra contained in a
simple pseudo Lie algebra must be reductive.

Up to now we have been unable to answer these two
questions. The following proposition gives another hint
that the “reductiveness conjecture” might be true.

Proposition 3: Let « = ¢® 1 be an arbitrary pseudo
Lie algebra. Suppose that « has a graded representation
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such that the corresponding invariant bilinear form on
a [see Sec. 2(n)] is nondegenerate. Then ¢ is reductive.

Proof: This proposition follows easily from Ref. 10.

To proceed it is now reasonable to assume that g8 is
reductive. If in addition K is algebraically closed, then
we can prove even more than our conjecture above.

Theovem 2: Let K be algebraically closed and let
e —=gdi be a simple pseudo Lie algebra. Suppose that g
is reductive and that the adjoint representation of ¢ inu
is undecomposable. Then 8 is semisimple and the ad-
joint representation of 8 in ¥ is irreducible.

Proof: The proof of this theorem is rather lengthy.
We begin with two lemmas which bring the adjoint
representation of ¢ in i {denoted by ad ) to some nor-
mal form. (As in the theorem we shall assume here
and in the following that K is algebraically closed.)

Lemma 3: Letg be a reductive Lie algebra, i.e.,
8=8°Xg°is the direct product of a semisimple Lie
algebra g * with an Abelian Lie algebra ¢° Then any
undecomposable representation of 9 is isomorphic to
the tensor product of an irreducible representation of
8¢ with an undecomposable representation of 8%,

Lemma 4: Suppose p is an undecomposable represen-
tation of an Abelian Lie algebra ¢° in a vector space V.
Then there exists a basis (e;),.;«, 0f V such that for all
Acg®andall ie{l,...,n},

pld)e; =xr(A)e, +§,; A (A)e,

with suitable linear forms x and x;;, 1<j <i<n, ong*
(i.e., the matrices of the representation are upper
triangular and the elements on the diagonal coincide).

(5.27)

Both lemmas are well known; Lemma 3 follows for
example from Ref. 11 and Schur’s lemma, and Lemma
4 is a special case of Ref. 12,

We apply these lemmas to ady. From Lemma 1(e)

we know that

tr(ad;A):O for all A c ¢°, (5.28)

hence the linear form x in (5.27) must vanish in the
present case. Since ady is faithful we conclude: There
exist's S-irreducible subspaces 8!, 1<;<n, of I such
that

(a) 1 is the direct sum of the u?, 1<i<n,

(B) the representations of ¢ © in the subspaces ¥ /
(induced by adjy and denoted by ady,) are all
isomorphic and faithful,

() (8% 9@, i’ especially (3% i) ={0}.

If =1, then we have the situation which according
to the theorem must hold: In fact, (g° i) ={0} and hence
8% ={0} since ad,, is faithful.

Let us now assume » > 2, We shall show that g °&®
(8°n) is an ideal of a. Once that this has been estab-
lished the theorem is proved: According to (y) this ideal
is different from a, hence equal to {0}; but g *={0} is
in contradiction with n=> 2,

To begin with we remark that
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(¢,i)=9 i, (5.29)
By (y) we know that

(8%,i)c @&, (5.30)
If equality would not hold, then we could write

F= (8% 0) + @i, (5.31)

which according to Theorem 1 is in contradiction to our
assumption that ¥ is undecomposable.

Now let 4 be the association subalgebra (without unit)
of / (u ) generated by the linear mappings ady4, A cq”
It is then easy to see that every element of 4 commutes
with every linear map ady X, X ¢ g, and that the product
of n arbitrary elements of 4 is zero. Furthermore, we
obtain from (5.29)

@ i =A(").

Next we choose a Cartan subalgebra f of 8°. For any
linear form A on f we define

(5.32)

8,={Xcs8 |[(H,X)=A(H)X for all He {}, (5.33)

W, ={ved [(H,V)=AH)Y for all He{ }. (5.34)
Then

g,= f+8° (5.35)

the linear forms A+ 0 withg ,# {0} are the roots of ¢

(with respect tof) and the linear forms A with i {# {0}
are the weights of adyj . Since all representations ad;;;,
l<j<wn, are isomorphic, all these representations have

the same weights. As is well known,
s __
8 —f@;.;oﬂ " (5.36)

i = @i,
X

(5.37)

For all linear forms @, Bon fandalli, je{l,...,n}
we have

(Ugs15) C 00 (5.38)
hence
(i}, 84)={0} if & +8#0 is not a root,
(itgy 15) C 84,5 if ¥ +8#0 is a root,

(T4, 05, C f+1a°

(5.39)

On the other hand, if we suppose a#0, then

(Basit 4) C tgape (5.40)

We can now prove a more precise version of (5. 32).
In fact, suppose je{l,...,n~1}1is given and let Z#0
be some element of /. Then (5.32) shows that there
exist elements @, € 4 and Zr €it”, 1<y<s, such that

z=3Q,Z).

But if we choose a weight A such that v 7 is one-dimen-
sional (such weights do exist) and if Z e x?, then it is
easy to see (since /4 and ad © commute) that we can find
one element P; €4 and one element Ze i} such that

(5.41)

Z=P\2), (5.42)

and consequently
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a) =P,(a%) for all weights a. (5.43)

After these preliminaries we are ready to prove that
§9(g%u) is an ideal of a (at least if n=> 3).

The Jacobi identity shows that

e%u), (a%u 0, a7 (g% (5.44)
Since ad-, is faithful we conclude that

Ko%i), (s%u N e’ (5.45)
i.e., that

(ul,ufycg® iflsi, jsn-1, (5.486)
If ¢ =1, then we can even prove that

(utyuy={0} ifl<j<sn~1, (5.47)
for we know that (a°,u ') ={0} and therefore

Gl et ) =Ce %, (', w ) =1{0}. (5.48)

As a consequence of (5.45) we derive that
(P, V), W) ==KU, P(V)), W) (5.49)

for all Pe 4; U, Veu, and Weil,
To prove (5.49), we distinguish two cases. If P

=ad A, Ac?, then

(A, UY, V) +(U, A, V) =(A,(U, V) =0. {5.50)
If on the other hand

P:(ad;Al)(adgAz)Q (5.51)

with A,, A,cq%and some Q € [/ (u), then with Q(U)=
(PU), V) =( A, (4, TN, V)
:<A1;(<Ag; [7>, V>> _(<Az, ﬁ>;<A1; V»

o (u, u)) +8%u),(g%u N (5.52)
and therefore [see (5.45)]
(P(U); V> € ﬂa;
(5.53)

Hence {((P(U), V), W) =0 and similarly (U, P(V)), W) =0.
Next we shall show that
(5.54)

provided that »> 3. Suppose first that 2<j<= -1. Then
we have for all weights a, B8, ¥

gy ud)sup

(w",uhHce® iflsjsn-1,

C(“a,("ﬂ’ n >) ("B;<“a, u >> (5'55)
and because (u7, i ={0} [see (5.47)]
<<ua’u8 >C<“B’<“a’ “B»- (5-56)

The left-hand side is contained in w’, the right-hand side
lies in # provided o +y # 0. Hence

Qin, 58, wly=1{0} if @ +y=0.
But we know that [see (5.43) and (5.49}]
En, o 4y, 80y = T, PLERY, &)
=P, (), 0 %), 1)

*<< "zx: Z); ﬁ”

(5.57)
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=iz, 5, uy)s (5.58)
which together with (5.57) yields
Kan,wd), 2y ={0} if a +y#0 or B+y20 (5.59)
and consequently
Camy h),ul)= ul,al,), w)yce! (5.60)
for all weights y.
Now (it", i) is a a.*-invariant subspace of ¢, hence

the direct sum of an ideal b of 8 ° with some subspace
ofg*, Let HevNf, Then by (5. 60)

(H,i7)C i, (5.61)
whereas trivially
(H,u#l)cCul (5.62)
Therefore,
, by ={0} (5.63)

for all weights y# 0. Since this equation is trivial if
y=0, we conclude that

(H, u*) ={0}. (5.64)

But we know that ady, is faithful, Therefore H=0, i.e.,
8N §={0}. This implies v ={0}, hence

(a", u) Cg®

It is now easy to prove the same relation for j=1. In
fact, because

if2<jsn-1, (5.65)

G anc g, (wfah={0} (5.66)
[see (5. 65) and (5.47)] we have
a2, Gamy M el am, w) +Gm, s, ey

=10}, (5.67)
and since adu, is faithful we conclude that

(w*, 8 e’ (5.68)

Collecting our results we have shown that for n> 3
(u, (g% a)cCe® (5.69)
But then ¢ *®{ ¢ &) is an ideal of a , as desired.

Hence we are left with the case n=2. This case will
be dealt with by an examination of the most general
ansatz for the product i Xi —¢ . Since adi is faithful we
conclude that

dimg’=1, (5.70)

For the following discussion it will be adequate to
modify our notation. From Lemmas 3 and 4 we know
that there exists an irreducible representation of 8° in
some vector space #° such that @ (equipped with the
adjoint representation of g ° ‘m i) is isomorphic to the
direct sum of two copies of &°. Therefore, we shall
write the elements of # in the form of pairs (1) with
u;, #;€u° The subspace i ' (resp. #?) con31sts of the
vectors of the form (¢) [resp. (2)] with uc&°. Further-
more, there is an element E € 8° such that

u u
() e
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The Jacobi identity for E and two elements of u yields

(& - @h=o
()=o) )

for all #, v € &° [The first equation is of course a
special case of (5.47)].

(5.12)

(5.173)

Let us now define two bilinear maps (i=1,2)

B xul—g° {5.74a)
and two bilinear forms
P’ xu’~K (5. 74b)
by
(6)- (-t
(5.75)

(). )= a0+ s, 0im

Then B, and ¢, are skew-symmetric [see (5.73)] whereas
8, and ¢, are symmetric [by (2.10)]. Furthermore,

the B, and ¢, are g ® invariant. In order to prove that
0°p(8%u)=0°®i’is an ideal of ¢ we have to show that
B,=0.

The Jacobi identity (with all three elements taken
from @) yields the following conditions on the 8, and ¢,
(the representation of ¢ in #° will be denoted by X — X):

Bolu, v)w + By, wh + By, uh =0, (5.176)
Bau, V) + (0, wu + ylw, u)p =0, (6.77)
By, v)w + B, (u, w)v =0, (5.178)
Bolvr, W) + ¢, (u, v)w + d,(u, ww =0, (5.79)
Bulu, whv + Bylv, whu =0, (5. 80)

for all », », we i,
Evidently, now,

Bi.(u, v)w is totally skew-symmetric in z, v, w

(5.81)
hence we may suppose
dimi,> 3, (5.82)
for otherwise B, =0. From (5.77) we conclude that
,=0. (5.83)

Note that as a consequence of (5.79) B, is completely
determined by ¢,. Equation (5. 76) then says that ¢, is
skew-symmetric (as we already know).

As we have seen, ¢, =0. But then ¢,#0, for other-
wise we would conclude that (¥ ,#)#4¢. Now the repre-
sentation of g° in w ® is irreducible, and the bilinear
form ¢, is ¢ *-invariant. Therefore

¢, is skew-symmetric and nondegenerate; in parti-
cular #° has even dimension. (5.84)

Now let sp(¢,) denote the symplectic Lie algebra of
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all linear maps of ii° into itself that leave ¢, invariant.
Since ¢, is g *~invariant we know that

(5.85)

For B~2(u, v) this condition is autom atically satisfied as
a consequence of (5.79).

B(u,v) e sp(p,) forallu, vei®, i=1,2.

_ It is now easy to show that the linear mappings
By(u,v), u, vei®, generate the vector space sp(¢,). In
fact, consider the linear map

B,: 5°®u°—sp(g,)

u® v— Bylu,v)

(5.886)

defined by 8,. We have to show that B, is surjective.

Using (5.79) and the fact that ¢, is nondegenerate it is
easy to see that the kernel of 8, is equal to the subspace
of skew-symmetric tensors. Our assertion then follows

by considering the dimensions.

We consider next the linear map
B :i%® %~ sp(e)),

u®v— B,(u,v), (5.87)

defines by B,. As we have seen, every element of sp(s,)
is the representative of some element ofg *. Since B, is
8 *-invariant, we conclude that 8, is sp(®,)-invariant.
Now B, is skew-symmetric; hence all symmetric tensors
are in the kernel of 3,. Considering the dimensions we
see that B, is certainly not surjective. But then 3,=0
since B, is sp(¢,)-invariant and since the Lie algebra
sp(®,) is simple. We conclude that 8, =0 and hence

B, =0, as desired.

The theorem is proved. There should exist a simpler
proof which in particular avoids the ugly separation of
the cases n=2 and n> 3.

Remark: Let us suppose further on that K is algebra-
ically closed and that ¢« = ¢ ®u is a simple pseudo Lie
algebra. We assume that g is reductive with nontrivial
center, i.e., 0 is the direct product of a semisimple
Lie algebra n ® with an Abelian Lie algebra s °#{0}. Then
# is the direct sum of two g irreducible subspacesi,
and ¥ , such that

(i) =Cugugy=10}, (uyuz)=s. (5.88)

Call ad;. the representation of ¢ in u, induced by the
adjoint r'epresentation. As Lemma 3 shows, y, and i,
are even ¢ °-irreducible; hence ad_ A is, for any Acs?,

a scalar multiple of the identity, i.e.,
ad. A=¢;id. , ao,cK.1 (5.89)
uj ui

Define dimu,=m, and let ¢ denote the Killing form of
a. Then [see Lemma 1, (¢}]

m,a, +m2a2:tr(adﬁA):0,

m,0f +myal =~ p(A,A). (5.90)
since ad 1vxis faithful we conclude that
dimg®=1 (5.91)

and, furthermore, that ¢# 0, hence that ¢ is nondegen-
erate. From Eqgs. (5.88) and the definition of the Killing
form one can easily deduce that the restrictions of ¢

to %, and to @, are zero. Therefore, the restriction of
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¢ to u, Xu, is nondegenerate, which implies that the
representations adil and ady of ¢° are contragredient
with respect to each other (aﬁd in particular that m,
= mz).

6. DISCUSSION OF OUR RESULTS CONCERNING
SIMPLE PSEUDO LIE ALGEBRAS

Let K be algebraically closed and let « =g @ ube a
simple pseudo Lie algebra. Suppose that 8 is reductive:
4 =8°X ¢ with ¢° semisimple and s * Abelian. Thena
belongs to one of the following four classes.

(I) « has a nontrivial center ¢ °. Then 3° is one~
dimensional, the Killing form of a is nondegenerate and
i decomposes into the direct sum of two g -irreducible
(hence s S-irreducible) subspaces u , ,. The represen-
tations of a° in 31 and ¥ , are contragredient with respect
to each other. Examples of this class are the algebras
spl{n, m), n>m=> 1, of Sec. 4(s8) and the algebras
a(2p,2), p=1, of Sec. 4{(c). Note that spl(2,1) and
a(2,2) are isomorphic.

(I1) # is semisimple and there exists a nondegenerate
even invariant bilinear form on a. Perhaps one should
distinguish between two cases:

(1) the Killing form of « is nondegenerate;
(2) the Killing form of ¢ is zero.

Members of the class (II. 1) are the algebrasa (2p, m)
with p, m=1 but m# 2 and 2p# m =2, of Sec. 4(c)."
Algebras of the class (II.2) are spl{n,n)/; ,, n>2, and
a(2p, 2p +2), p=1; see Sec. 4(a), (c).

(I11) 8 is semisimple and there exists a nondegenerate
odd invariant bilinear form on a {in particular the Kill-
ing form is zero). One can prove'® that the algebras of
this class are precisely those for which the adjoint
representation of g in u is isomorphic to the adjoint
representation of g (inn ) and that the members of this
class are just the algebrasy /4 ,, >3, of Sec. 4(e).

(IV) s is semisimple and there is no nonzero invari-
ant bilinear form ona . Examples of this type are the
algebrasy ,, #>3, of Sec. 4(d).

Presumably, with this classification we have reached
a position where a detailed inspection of the representa-
tions of semisimple Lie algebras could lead to the con-
struction of all simple pseudo Lie algebras whose
appertaining Lie algebra is reductive.

As we have mentioned case (III) has already been
settled. For the classes (I) and (II) the methods of Pais
and Rittenberg will be useful. One should note, further-
more, that the vanishing of the Killing form of a implies
in particular that the Killing form of the (semisimple)
Lie algebra g is equal to the invariant bilinear form on
¢ associated with the adjoint representation of ¢ in u.
Work along these lines is in progress.

7. SOME RESULTS ON SEMISIMPLE PSEUDO LIE
ALGEBRAS

In this section we do not try to give a general defini-
tion of semisimple pseudo Lie algebras. Presumably
any simple pseudo Lie algebra should be semisimple.
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Therefore we prefer to wait until our knowledge of sim-
ple pseudo Lie algebras has been improved. Neverthe-
less the pseudo Lie algebras with nondegenerate Killing
form should be semisimple according to every reason-
able definition of semisimplicity, for we can prove that
these algebras are direct products of simple pseudo Lie
algebras. In fact, we have the more general following
theorem.

Theorem 3: Suppose that a pseudo Lie algebra a has
the following properties:

(1) there exists a nondegenerate homogeneous invari-
ant bilinear form ¢ ong,

(2) a does not contain any nonzero graded Abelian
ideal. Then a has only a finite number of minimal
graded ideals 6,,..., 5, and ¢ is their direct product.
The ideals b; are simple pseudo Lie algebras and they
are orthogonal with respect to ¢. Any left or right ideal
of a is graded and is equal to @;-, b; with a suitable sub-
setJ of {1,...,7}

Proof: The first part of this proof is a trivial modifi-
cation of a proof originally due to Dieudonné (see Ref.
15). We repeat it here for the convenience of the
reader.

If 8 is any graded ideal of a, then
bi={X=a|¢(X,¥)=0 forall Yeu} (7.1)
is also a graded ideal ofa .

Now suppose that & is 2 minimal graded ideal of a (of
course we assume that b #{0}). Thens nv*is a graded
ideal ofa , hence equal to v or to {0}. In the first case
we conclude that

(a, (0,0 )=0(s, a),5) ¢(5*, b) =1{0}

But ¢ is nondegenerate, hence (g , b )= {0} and therefore
[because of property (2)] 5 = {0}, contrary to our
assumption. It follows that « = 9% 5* and furthermore
(since b and v are ideals) that

(6, vHcuwnot={0}

(7.2)

(7.3)

Therefore a is the direct product of its graded ideals

b and 5*. Consequently any graded ideal of ¢t or v*is

a graded ideal of a . This shows on the one hand that s is
a simple pseudo Lie algebra. On the other hand, using
in addition the obvious fact that the restriction of ¢ to
b'x b' is nondegenerate, we see that b * satisfies the
conditions (1) and (2), too. Induction on dim o then im-
plies that

@ =g, X Xg , (7.4)

where 6 , 1<j<v, are minimal graded (and hence sim-
ple) ideals of « which are orthogonal with respect to ¢.

Now let { be any left ideal ofa . If j={1,...,7}, then
;N f is a left ideal of o ;, hence (see Sec. 3, Proposi-

tion 1) equal to {0} or tos ;. In the first case

{6, 1) 5,01 ={0} (7.5)

in the second case b,C {. Define
J={jlisjsr, s,=t} (7.6)
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If Hefand if

H=§H,, Hci, lsjsw, (7.7
then ic {l,...,7}, i¢J, implies that

(B,H,)=(B,H)=0 forall Bcy,. (7.8)

This means that H, is an element of the center of v ,,
hence it is equal to zero (since ¢ ; is simple).
Consequently

=@ o (7.9)
ied

as desired. In particular, every minimal graded ideal
of a is equal to some® ;.

The case of a right ideal f is treated similarly, hence
our theorem is proved.

If the Killing form ¢ of a pseudo Lie algebra a is non-
degenerate, then Theorem 3 is applicable. In fact, we
have to show that assumption (2) is satisfied. Let ¥ be
the grading automorphism of a [see Sec. 2(b), (e)]. If
b is a graded ideal of @ such that (v, b ) ={0} and if
Aca, Beb, then

¥4, (B,a)Cs, HA,(B,s)={0}, (7.10)
and therefore
(A, B)=tr(¥(ad A)(adB)) =0, (7.11)

Since ¢ is nondegenerate, we conclude that 8 ={0}, as
desired,

With the notations of Theorem 3, thes ; are orthogo-
nal with respect to ¢ and it is easy to see that the re-
striction of ¢ tob ;X 5, is the Killing form of b ;. Con-
sequently, the Killing form of b ; is nondegenerate. Thus
we have proved the following corollary.

Covollary 1: If the Killing form of a pseudo Lie
algebra a is nondegenerate, then ¢ is the direct product
of simple pseudo Lie algebras whose Killing forms are
nondegenerate.
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Theorem 3 and Corollary 1 are useful if one wants to
change the base field K. For example, using Corollary
1 as well as Theorem 1, 2, and Proposition 3 of Sec. 5,
we deduce Corollary 2.

Corollary 2: If the Killing form of a pseudo Lie
algebra s =g u is nondegenerate, then the adjoint rep-
resentation of 8 in u is completely reducible.

In particular, for simple pseudo Lie algebras with
nondegenerate Killing form the two conjectures of Sec.
5 are true. Note that we do not assume that X is
algebraically closed.

IWe prefer to call them “pseudo Lie algebras” since the
name “graded Lie algebras” might lead to confusion with Lie
algebras (in the ordinary sense) which are graded (such ob-
jects occur in the mathematical literature, too).

2], Corwin, Y. Ne’eman, and S. Sternberg, Rev. Mod. Phys.
47, 573 (1975).

3M. Scheunert, to be published.
4Bourbaki, Algebre (Hermann, Paris, 1962), 3rd ed., Chap.
Chap. II, Sec. 11,
5Bourbaki, Algebre (Hermann, Paris, 1971), Chap. III.
fRef. 5, Sec. 4, n°T.

"A. Pais and V. Rittenberg, Preprint Rockefeller University,
New York, C00-2232B-74,
85ee also Ref. 2.

9Bourbaki, Groups et algebres de Lie (Hermann, Paris, 1960),
Chap. I, Sec. 6, Proposition 5.
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Phase integral approximations for calculating energy bands*
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The phase integral approximation is modified to incorporate an energy-dependent effective potential that
manifests the energy band character of lattice potentials. The resultant phase integral approximation
because of its inherent renormalization demonstrates superior validity. Numerical examples which compare
this approximation with other methods substantiate the superior convergence of this modified phase

integral approximation.

I. INTRODUCTION

In application to the one~dimensional periodic poten-
tial, neither the ordinary WKB approximation, nor its
progeny, the phase integral approximation (we use N.
Froman’s definition of phase integral approximation};
regrettably this terminology is not universal), predict in
general the existence of band gaps in energy when ap-
plied to the nearly free electron (NFE) (i.e., an elec-
tron with sufficient energy to preclude the existence
of classical turning points). This deficiency manifests
that both of these approximations ignore the effects of
continuous reflections of a wave in a slowly varying
medium which accumulates coherently for a periodic
medium under conditions of Bragg reflection.

In order to correct the aforementioned deficiency, the
phase integral approximation is modified to develop a
new method herein by introducing an energy-dependent
effective potential in the phase integral. This effective
potential, which is developed from first principles to
first order in potential, has innate renormalization
which renders a most robust approximation with superior
validity. We emphasize fidelity of the approximate eigen-
functions as well as the accuracy of the associated eigen-
value estimate.

In Sec. II we develop an energy-dependent effective
potential which is substituted into the phase integral ap-~
proximation. This effective potential manifests band gaps
for periodic potentials that are consistent with first-
order degenerate perturbation theory. The high-~-wave-
number spectral components of the original potential
are shown to be attenuated in the effective potential. In
Sec. III, we investigate the innate renormalization of
the effective potential phase integral approximation. We
make a comparison among the spectral analyses of a
Matheiu function and both its WKB and its effective po-
tential phase integral approximations. Leading order
error terms are deduced, and these establish the supe-
riority of the effective potential. In Sec. IV, numerical
examples are adduced to substantiate the improvement
in performance of the approximation that is rendered by
using the effective potential.

Il. THE EFFECTIVE POTENTIAL
The time-independent Schrodinger equation in the
one-dimensional case may be expressed as

& U+ ey =

where
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Q) ={(2u/M)[E = V()12

E is the energy, and V is the potential. The lattice
periodicity is assumed to be “a”, i.e., V(x+a)=V(x).
For application of the ordinary WKB approximation,
the first-order (in %) prerequisities of Froman and

Froman® are

and
2 L0 0@t dx|«<1, (2)

where (T; x) is the Schwarzian derivative of T and is
defined by

(T. ”C) —_— le /2 a (Q-l/Z)
’ dx®

and where
T:fo(x')dx'.

Let us substitute into the time-independent Schriodinger
equation that

) = olz(0) /[, (0] 72,

where 2, =dz/dx and in general z,=(d"z/dx"). The
Schrodinger equation is then mapped into

—-—z—d ¢(2) +R(2)¢(2) =0, (3
where
R(2) =2z{4Q%*~ 3 (z; »)} (4)

and where the Schwarzian derivative of z is defined by

1/2 @ e
—— (2779,

(z; %) =~ 223 e

With R(z) appropriately assigned, the solution to Eq. (3)
will be in closed form: for R(z) =1, ¢ =exp(+iz); for
R(z)=0bz",

1725 2012 ey
1/(n+2) n+9 4

etc. Equation (4) must be solved for 2z to develop an
explicit expression for ¥(x).

p=z

If R(2) is chosen to mimic @%(x) throughout the domain
of interest, 2z, will then be nearly constant, and (z; x)
in Eq. (4) may be neglected. Then
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2, =[Q%x)/R(2) /2. (5)

If R(z) =1, then ¥(x) becomes the phase integral approxi-
mation to first order in 7. Consistent with well-known

results, the approximation of Eq. (5) improves as E
— 00 N

In the case of R(z) =1, contemporary workers have
used an asymptotic expansion in powers of % when solving
for 2, where the right side of Eq. (5) represents the first
term. (The asymptotic expansions for the phase inte-
gral and WKB approximations begin to differ with the
7® order term.!) N. Froman' has shown that those points
at which the asymptotic expansion for z; diverges with-
out limit and the zeroes of z; are singular branch points
of ¥(x). The form of the higher order phase integral
approximations is convenient for choosing branch cuts
that allow a reasonable contour path close to the real
axis in order to satisfy the conditions of Eq. (2). As in
the WKB case, the domain of applicability of this phase
integral expansion is limited by its asymptotic nature.

Hecht and Mayer® offer an alternative approach for
solving the time-independent Schrodinger equation based
upon iterative approximate solutions to Eq. (4). Their
results are modified herein with R(2) carried explicitly.
Let 2™ represent the mth iteration for the approximation
of z. If z'™ is a close approximation, then dz/dz‘™ =~
and (z; 2™} may be neglected. Under these circum-
stances, Hecht and Mayer have shown that?

[R( (mvl))]i/zdz(md) ~<dz(””)'1[Q2( ) L( (M).x}]llz
2 & \ax #r =z a0,

(6)
where 2™ must be a function such that the quantity in-
side the brackets on the right side of Eq. (6) remains
positive nonzero.

Let us now return to the lattice potential case with
periodicity “a” where the potential may be expanded

into a Fourier series as

V=2, v, exp(i2qnx/a).
T
In the nondegenerate case (i.e., E is interior to an en-
ergy band) for E> V(x), a solution for z; may be repre-
sented by an effective potential, W(E, x), such that for
given E

2p\1/2 e (20N [ae W
21:(%2-) (E-w] 3~%7 T Rk

(7

(The following analysis may be generalized for non-
periodic potentials.) Consistent with Eq. (6), the be-
havior of W(E, x) is such that [E - W] is always positive
nonzero. We therefore have to first order in V by Egs.
(4) and {7) that

12 d®W /dx?

W=Ve——-"a— .

8u E
The effective potential W is then the solution to the in-
homogeneous wave equation

8u 8u

W”+—ﬁTEW=?EV (8)

or

8u .

W:_?}'E-bj; Gyplx, x)V(x") dx', (9)
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where the Green’s function for the wave equation for
E =m?k%/(21) is of the form

1

4 B L —
Guel, ) =gpoamms

’

cos[2k(x' — a)] cos(2kx), O<x<x’
{ <x<a

*Ycos(2kx") cos[2k(x - a)],

]

for unstable equilibrium points of V(x’) located at x*
=0,+a,---. A tacit nonlocal character of the effective
potential is manifested in Eq. (9). By Eq. (8), the effec-
tive potential may be represented by

exp(ik,x)

_5%
W(E,¥) =2 T i

where

(109)

E,=(nk)?/21, k,=2q7/a.

By Eq. (10) for E, > 8E, the high-wavenumber compo-
nents of the potential, which are so deleterious to the
WKB approximation in accordance with Egs. (1) and (2),
are filtered out from the effective potential progressive-
ly with increasing wavenumber.

In accordance with Eq. (7), the previous assumption
that V<« E should now be altered and substituted with
the requirement that W< E, If a large potential, V, is
nearly orthogonal over the unit cell to the Green’s func-
tion for a particular E, such that £ <V, but £> W,
then the domain of validity of the iterative approximation
can be extended to include bands of lower energy.

For completeness and mathematical rigor, the exact
effective potential W can be described without approxi-
mation by the nonlinear differential equation

h—z
W:V+71-E(Z;x)

n® d*W/dx®  5Kr® (dW/dx)?

V-8 (E-W) 325 E-WR"

(11)

In general Eq. (11) is simpler and more tractable to
approximation than either Eq. (6) with R(z)=1 or Eq.
(4).

The Bloch wavenumber % may be deduced from the
effective potential by applying the periodic boundary con-
ditions to the modified phase integral, that is,

ENT)Iff [E - W(E, x)}/2dx
0

=k'atnm, n=0%1,£2,---,
=ka, (12)
where |&’'| <w/a and k=Fk'+ (n71/a). Hence E may be
expressed as an explicit function of 2. Also as the inte-
gration limits in Eq. {12) represent a complete rotation
period, z(a) represents an effective action variable
[where z(0) =0].

Any small but finite effective potential W has an expli-
cit energy dependence [Eq. (10)] with singular points
that consist of first-order poles in accordance with the
associated Green’s function. These singular points in
the small potential limit locate the centers of the band
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gaps that exist in the allowed energy values for stable
solutions to the Schrodinger equation with periodic po-
tential. In order to deduce the width of these band gaps,
let E(k) at k=k,/2 for nonzero 7, be given as

E(k,/2) =5k +Cv,

where C is a constant to be determined. From Eqs. (7),
(10), and (13) we have at the gth band gap that

_ k3+2uC'yq 1/2 exp(ik,x)
AT\ T l-—c

(13)

- v, explik,x) )1 &
e FOR2/BU + Cy, - FPRE/81)  °

For 2, to be positive nonzero in Eq. (14) in accordance
with Eq. (6), then |C|>1, Thus, the values C=+1,-1
are the limit points for allowed values of E in the vici-
nity of the band gap [albeit nonstable solutions for
W(E, x) may be generated from Eq. 8 for IC|<1 by re-
laxing the requirement for periodicity in W(E, x)], and
to first order in v, the width of the ¢th band gap for peri-
odic solutions for W(E, x) is 2y, consistent with first-
order degenerate perturbation theory.

(19)

For three dimensions, we may now guess the effective
potential that is inserted into the phase integral solution,
¥(r), for a lattice potential, V(r) with a lattice cell de-
scribed by the spatial triad a,, a;, and a;. We assert that

ll)(r):q"’zexp(ifrqﬂr),
where
g=lql
and
1/2
qZK[l— 2 a;,m,nexp(ikz,m,n'r)] ;
1,m,n

where X is a constant vector such that
s e

3 ~
=(s+t+u)m+2 ke ba;, s, t,u=0,£1,£2, -c,
i
where k has the magnitude of the reduced Bloch wave
number and the b;’s are the unit vectors for the reci-
procal space triad. The Fourier coefficients «,;,, are
given by

QApp = al’mn/[l - (kl mn/ZK)z]’

where @; ., is the Imnth Fourier coefficient for V(r).
Hence the wavefronts of constant phase for ¥(r) may be
described as a series of parallel planes that are cor-
rugated along the two dimensions of the planes them-
selves to produce wafflelike wavefronts. The degree of
undulation of the corrugations along the ray normal to
the wavefront is dependent upon the running value of the
phase integral.

11l. RENORMALIZATION
As the effective potential phase integral approximation,

(E = W(E, x) ]/ exp <z'(_2_1“_%)_1.ffx[E— W(E, x) /de'),

may be represented as a compoundly modulated carrier
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wave, it is innately a renormalization of the spectral
resolution of the solution to the Schrodinger equation.
This renormalization offers the prospects of a more uni-
formly valid approximation than the approximation
formed by a perturbation expansion of similar order
over the plane-wave set.5"

We shall investigate the ramifications of renormali-
zation by considering the effective potential phase inte-
gral approximation for Matheiu functions. Mathieu’s
equation, when it is represented with periodic coeffi-
cients as

P

Ez—z—+(a—27cos22)d>:0, (15)

has often been used®'® as a didactic example with a
known exact solution for the study of energy bands of
one-dimensional crystals. In Eq. (15) the eigenvalues,
a, and the normalized potential, 2y cos2z, correspond
respectively to 2uE/%#?% and 21 V/K? of the time-indepen-
dent Schridinger equation. The solution to Eq. (15), a
Mathieu function, is well known to obey Floquet’s the-
orem, and may be expressed as

$(2) = exp(ivz)¢(2) = exp(ivz) 2.c,, exp(i2nz),

S

where ¢(z) is periodic with period 7 and v, the charac-
teristic exponent, is a function of o and 7. For certain
ranges of o and ¥, V is entirely real. These ranges
form regions (bands) in the a—¥ plane where exp(ivz)
is the Bloch factor and ¢(z) is stable. For ¥ #0 these
bands are separated by gaps where v(a, ¥ #0) has a non-
zero imaginary component which generates unstable
solutions, ®(z), as z ~x°. For the nth band in the limit
y=0, (n-1)2<|r? = o?<n? and the bands oscillate in
consonance with the order of . Thus, the qualitative
behavior of Mathieu functions, resembles the observed
features of electron band theory.

Let us assume that o> vy. We now expand the effective
potential phase integral approximation in a power series
in ¥ and rearrange terms as a spectral analysis in order
to compare this power series to a higher order pertur-
bation expansion for a plane wave set (i.e., an expan-
sion of Floquet’s solution). It is noted that for consis-
tency o must be deduced from the effective action vari-
able, i.e., z{m) =v7m, This leads to

a=v2+[y2/2(v - v1)2]--- (16)
vis-a-vis the actual value'® of
a=vi+[y2/2(v2-1) ", am

Had « been established by Eq. (17), one would observe
a higher order (in ¥) wavenumber shift in the character-
istic exponent. After a tedious, but straightforward ex-
pansion, we have derived the ratio of

=y PPt +390% + 4v2 - 560 - 5)

c, 4v+1)~ 128w+ 1) r-1)1 ’
v]=1, (18)

which compares to the tabled value'! of

Co_ =7 LGk L)

c, 4(v+1)7 1280 +1)(+2)(v-1) ’

lv]#1,2,38,---. (19)
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Hence, the relative error in Eq. (18) is O(¥*/v%). Like-
wise, this approximation gives

¢, _ Y(v2-3v+5)

PO IR V. s VAR |v|#1,2, (20)

vis-a-vis the tabled value! for Floquet solutions of

G v
¢, 2@F+NEFY
The relative error in Eq. (20) is O(¥*/v*). In turn, for

large o, our approximation to leading orders in ¥ and
v for the general term gives

Car (=)' L+ 1)

¢, 2ZNINIT(v +2)°

lv|#1,2,--.

v#1,2, -+, N, (21)

vis-a~vis the correct value'! of

Con __ (_)N.}}VF(V +1)

T, ZZNITINFD T

c v#1,2,:--N,

which indicates an error in Eq. (21) of O(" /v¥*!) for
N+#-2,-1,0,1,2, Thus, the leading ¥ dependence in
the error terms (located in both the ¥2 and »® terms) is
O(vY). Hence, as a result of renormalization, the ef-
fective potential phase integral approximation is ex-
pected to approach the accuracy of a second order per-
turbation solution. These error terms also manifest
the limits where validity breaks down.

The set of WKB approximations has been identified as
nonorthogonal.!? However, here we observe that the
orthogonality of the set of effective potential phase inte-
gral approximations is consistent to almost second order
perturbation theory; again the deviation from orthogonal-

ity is of O(¥*/v*).

Had we analyzed the WKB approximation, then the
corresponding ratio for the WKB representation is

Cep _FY

-1 2
R (1xv )y +003).

(22)
By Eqs. (19) and (22), the leading relative error for

the WKB approximation is in the term O(y/v%). Conse-
quently, one expects the WKB approximation to approach
the accuracy of only a first order perturbation solution
and to have limits of validity inferior to those of the

effective potential phase integral approximation. For
completeness, Furry13 described the error in the WKB
approximation as x -« as O(E™), i.e., O(¥"%). How-
ever, Furry applied the WKB approximation to the har-
monic oscillator where the Schwarzian derivative (z; x)
does not remain small over the entire range. Here we
have applied the WKB approximation to a unit cell of a
periodic potential with a sufficiently great to preclude
the existence of any classical turning points, and conse-
quently the Schwarzian derivative remains small through-
out the unit cell.

IV. NUMERICAL EXAMPLES

Let us make some energy calculations for the normal-
ized (i.e., #%/2p=1) lattice potential of Mathieu, V
=2y cos2x. Exact energies are the eigenvalues, o’s,
for Mathieu’s equation. For the effective potential phase
integral approximation, a first approximation for the
eigenvalue, a(,, is deduced from the effective action
variable consistent with Eq. (16) and for a Mathieu po-
tential may be derived in closed form for a given cha-
racteristic exponent v (i.e., Bloch wavenumber) as

T
f [a(l) - W(a(l)y x)]1 /2 gy
9

2y 1/2 4y
= + _
z[aa’ 1—‘1?1)] E am‘1+27)

=v7,

where E(x) is the complete elliptic function of the second
kind and

2
y_ cos2x,

W(aay, ) =12 Q)

@, is equivalent to a first principles quantum defect
method for the calculation of . A more sophisticated
calculation for the eigenvalue, «(;, is given by evaluat-
ing the expected value of the Hamiltonian, i.e.,

a(z)=<0‘(1> |Hl au))/(aa) | Ay,

=y, - L [ag,+2v2] /2
T O T2 E 2/ MR(9 (ay, + 27)

57292]
X[1easig |-
[ 8ay, ’

(23)

TABLE I. Calculated eigenvalues, ¢’s, of Mathieu's equation, p” + (o ~ 2y cos2x)y=0 for selected y and selected values of the

characteristic exponent v.

Characteristic exponent, v 0.3 1.9 3.5 4.5 5.5

v 0.03 1.0 1.0 1.0 1.0

o, Rounded-off Exact . 08950555848 3.710 12,294 632 20.276003 36 30.26710156
@ (y», Phase Integral® . 089506 32382 3.714 12, 294 607 20.276 00209 30.26710141
@ (1), Phase Integral® . 090048982 32 3.676 12.298481 20,277 34259 30.26768418
@ (2, WKB? .1649d 3.780 12,294 290 20.275937 27 30.267 08255
@y, WKB® . 0951949 3.752 12.290901 20.27471022 30.266534 58
@ , second order perturba- . 089505494 50 3.802 12,294 444 20.275974 02 30.26709401
tion

o , fourth order perturba- .089505 558 50 3.689 12,294 626 20.276 003 20 30.26710155

tion

o= Hlo gy/Se w o m)-
bjt)(a(i)—VV)“?dx:VW.
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°f;(oz w =N 2dx=vg,
4The poor convergence manifests that the WKB method is a
short-wavelength approximation.
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where 2=(1-a1,)™? and K(x) is the complete elliptic
integral of the first kind. Had we used the WKB approxi-
mation for band calculation, then for @, we would have

L4
4y
lag,~ V)P 2dx=2[a +271/2E(-———>
j; 1) [ 1) ] 01(1)+2’}’

= VT
and the analogy to Eq. (23) would be

¥ [Q(Q"‘Z'YP 2
5’2 (2/MK(4y/(ay, +27)

35 72 ]
+= |
[1 8 aq) *

Table I exhibits the computations of energy levels
(i.e., eigenvalues) for a normalized Mathieu lattice po-
tential, V=2ycos2x, by various methods for both the
characteristic exponential values of ¥=23.5,4.5,5.5
and y=1. For these, o, and @, are computed for
both the effective potential phase integral approximation
and the WKB approximation; for comparison a is com-
puted by second and fourth order plane-wave perturba-
tion theory as well as given for rounded-off exact values.
Although the effective potential phase integral approxi-
mation is computed to only first order in V, it renders
the @ ,’s through the power of renormalization that ap-
proaches the accuracy of a fourth order perturbation
calculation. For the WKB approximation, by contrast,
az, approaches the accuracy of only a second order per-
turbation calculation in consonance with Eq. (23).

Q)= 0q, T

The observed error in «,, of the effective potential
phase integral approximation for ¥ =3.5,4.5,5.5 is
observed to fall off almost as O(¥™?), This is consistent
with variational methods for perturbation computations.
As a variational trial function, the effective potential
phase integral approximation deviates from the Floquet
solution by an error of O(v™) in accordance with Egs.
(18), (20), and (21). Thus, one naively might suppose
that the eigenvalue calculation is in error of O(v-8
however, the situation is more complex since the eigen-
values of o are dependent upon the variational parameter
v. As the effective potential approximation renders cor-
rectly the ¥’ and ¥% term of a power series expansion'’
for a and as the ¥* term of this expansion is also of
O(v™), the correct expected error is of O(v™?),

Since the observed accuracy for calculating eigen-
values is consistent for the various levels of eigenvalues
with the predictions for variational methods with a trial
function consisting of the effective potential phase inte-
gral approximation, the trial functions must be innately
orthogonal to a degree consistent with the error of the
trial function as predicted in Sec. III.

Table I exhibits a comparison among various methods
for calculating the eigenvalue « for a normalized Mathieu
potential, V=2ycos2x, with y=0.03 and ¥=0. 3. Since
the lattice period of this potential is shorter than the
carrier wave’s period, the WKB method is not justified
as confirmed by the poor performance manifested by
the WKB calculations for either o, or a,,. Concur-
rently, the accuracy of a,, for the effective potential
phase integral approximation is consistent with the anti-
cipated accuracy of the variational method using this
approximation as a trial function.
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Also Table I exhibits this same comparison for an-
other normalized Mathieu potential, V =2y cos2x, with
¥y=1and ¥=1.9. Since we are in the neighborhood of
the associated effective potential’s resonance at v=2,
the effective potential phase integral approximation is
degraded.

For completeness, it is noted that the excellent re-
sults in Table I for @, reckoned by the WKB method
are expected because the associated isolated ionic po-
tential is the potential for the harmonic oscillator®*®
for which &, is by coincidence exact.

The eigenvalue calculations were made for a given
Bloch wavenumber (characteristic exponent) in order to
facilitate a comparison among various methods. For
conventional methods, the convenient method of calcula-
tion is from the Bloch wavenumber to the eigenvalue.

In contrast, for the effective potential phase integral
approximation, the convenient direction of computation
is from a, to the Bloch wavenumber and a(,,. The ef-
fective potential phase integral method computes the
Bloch wavenumber and «,, by a finite real space
integration.
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Linear boson transformation coefficients
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A simple expression for the coefficients which connect a Fock state containing an arbitrary number of
quasiparticles with its tranformed state under a boson Bogoliubov transformation is obtained.

I. INTRODUCTION

The coefficients which connect a Fock state containing
an arbitrary number of quasiparticles with its trans-
formed state under a boson Bogoliubov transformation
have been calculated by several authors. 35 Tanabe® has
obtained a result using eigenfunctions of the linear
harmonic oscillator. The result, however, is extremely
complicated. Rashid® has calculated these coefficients
using recursion relations the coefficients satisfy and
constructing the generating function for them. Aronson,
Malkin, and Man’ko® have obtained the coefficients
using coherent states.

1,2

In this note we present a calculation of these co-
efficients utilizing a Baker —Campbell —Hausdorff (BCH)
formula for the generators of the SU(1,1) group, pre-
viously noted by Gilmore.® In our opinion our calculation
is much simpler than the previous ones.

11. A BAKER-CAMPBEL L-HAUSDORFF FORMULA

We first derive the Baker —Campbell —Hausdorff
formula which plays an important role in our calcula-
tion. It has been noted by Gilmore® that BCH formulas
giving eXe? in the form e#X»Y) can be obtained by matrix
multiplication if X, Y are operators in a finite-dimen-
sional Lie algebra.

Consider the Lie algebra of the noncompact SU(1,1)
group which is spanned by the three operators K,, K,
which satisfy the commutation relations

[KB!K*]:iKu (1)
[K+,K-]=_2K3' (2)

We consider the disentanglement of the operator
exp[x(K_-K,)] in the form

exp[x(K_ - K,)] = exp(akK,) exp(BK,) exp(vK_). (3)

Consistent with Gilmore’s observation we note that
K,, K, have the finite-dimensional faithful matrix
representation

01

K=\o o/ )
0 0

K = , (5)
-1 0
1 0

Kszé ’ (6)
0 -1

which yields the form of Eq. (3) in this representation
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as
coshx ~sinhx
—-sinhx coshx
exp(8/2) - avexp(- 8/2) aexp(-5/2)\ o
- vexp(-8/2) exp(- 8/2)

Solving for a,B,7, we get
exp(x(K. - K,)] = exp(~tanhx K, ) exp{(2 In coshx K,)
x exp(tanhx K_). (8)

Although the result has been derived in the 2 X2
matrix representation, it is valid for all faithful repre-
sentations. ® In the following sections we consider the
representations of K,, K, in terms of harmonic oscilla-
tor creation and annihilation operators and apply Eq.

(8) to calculate linear boson transformation coefficients.

I1l. DETERMINATION OF THE COEFFICIENTS FOR
ZERO MOMENTUM BOSONS

In this case the Bogoliubov transformation is
b=eSae"S (9
(10)

where the annihilation and creation operators ¢ and af
satisfy

bT — esare-s,

la,a']=1. (11)
The operator S is given by

S=3x(aa -a'a')=-S'. (12)
We must compute
Gk;l(x)=a<k|esll>a (13)

=vElll H,,, (x). (14)

We note now that the operators K,, K, of Sec. II have
the following representation:

K,=%d'd", (15)

K_=3aa, (18)

K,=4%(a'a+ ad"). 1)

Equation (8) is valid for this representation too.

Next, by using Eq. (11} and the representation of X,

K, above, we get the following results:
exp(tanhx K, )a exp(~tanhx K,) =g — tanhx o, (18)

exp(tanhx K _)a' exp(- tanhx K_) =o' + tahnx a, (19)
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exp(-21n coshx K,;)(a" + tanhx a) exp(2 In coshx K,)

=sechx a' + sinhx a, (20)
exp(-21n coshx K;)| 0), = (sechx)*/?| 0),. (21)
Noting that

expS = explx(K_-K,)] (22)
and

|&), = (a™/VED)|0),, (23)

al0),=0 (24)

and using the results mentioned above, we get

(sechx)!/?
k1!

X (a' sechx + a sinhx)? | 0),. (25)

H, (x)= (0|(a - tanhxa")*

Next for two operators P, such that [P, Q] is a ¢-
number we have the normal ordering formula of Wilcox”

[n/21 n-22
_ Z; [P,Q]kn! ° (IS 2k -8
(P+Q)n_k=20 Ry i Ter 1 Qs prek-s (26)
where

[#/2]=n/2 for n=even integer
=(n-1)/2 for n=o0dd integer. @mn
From Eq. (26) we get

0 ] (a - tanhx a')?

k‘ o
[r/2)
(- 3 tanhx)" 2n
= Z)O m L0]a*? (28)
and

l‘ (a' sechx + a sinhx)! | 0),

[1/21

=2 SEt(l#—T(a sechx)!=*" | 0), . (29)
m=0
Thus from Eqs. (25), (28), (29) we get

Hk;l(x):

and the nonvanishing values of H,,,(x) are

0 unless &, are both even or both odd integers

H,,,(x)= (3 tanhx)*-¥ /2(sechx)**!/2

(r/2 .
&2 (- % sinh?x)"

X A Tk -2 [t G=R)/2]!

n=0
fori=k

= (- tanhx)*""/2(sechx)?*1 /2
x [%2] (- 7 sinh®x)"
o ntl=2n)n+ (e -0)/2]1
Defining [%,1]=min(k,!), we get a single formula for
Gk;l(‘x):

Gk'l(x): (RY111)/3(=1)¢ l1-rl-1+8) /4

for =1 (30)

x4 tanhx )l -#1/2(sechy)tes 11+ /2

[k/2,1/21 .
y (- % sinh2x)"

(k] -2n)1(n+ 1L —R1/2)!

X
n=0
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for &,1 both odd or both even integers

=0 otherwise. (31)

The appearance of our result is different from that
obtained by Rashid.* However, we have checked that by
using the technique outlined one can easily derive the
generating function of H,,,(x),

H(a, Bix) = E H,, (x)a*g, (32)
in the form
H(a, 8;x) = (sechx)'/? exp[(aB/coshx) — 3(a? — #?) tanhx],
(33)
which is identical with Rashid’s result.
IV. DETERMINATION OF COEFFICIENTS FOR
NONZERO MOMENTUM BOSONS
In this case the Bogoliubov transformation is
by=eTae”, (34)
Bl=eTale?, (35)
where
lay,al]= O, ke (36)
and
T=-xaaly ~aa,)=-T" (37)
We have to compute
G!’,a;r,s(xk) = (1/ p'q‘r' ‘
X (0| (a*(a_y) €T (a))¥(al,)* |0, (38)
=Vp!q!r!s!H"“r's(xk). (39)
In this case the operators
K,=ald!,, (40)
K =aa,, (41)
K,=z3(ala, +alyal, +1) (42)
generate the algebra of the SU(1, 1) group.
It is easy to see that
K |r,s)=[(r+1)s+1]""2|r+1,s +1), (43)
K |r,sy=(rs)/?|r-1,s -1), (44)
K r,s)=%r+s+1|r,s). (45)
Thus
Gb.a;r.s(xk)
={p,q | exp(~ tanhx, K,) exp(- 21n coshx, K,)
X exp(tanhx, K_ )Ir s)
1)7‘ anhx;)’"”
XZ Al u\
X{p,q|K* exp(- 21n coshx, K)K'|7,s). (46)
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Using the recursion relations (43)—(45), we get finally

Gy, 4ir, %) = O,y . o(S€CHX,)™* (= tanhx, )~

In this case also the expression for G

x25 [(- sinh®x)*/(p—r+ w)lul]

X[r—p+D(s—p+ 11|

x(p=1lg =Dl - Di(s = 1)1 {1/2], 1)

p1airss differs in

appearance from that of Rashid? but again the generating
function

H(G,B:')’,G;xg): Z; a’ﬁq}’aaﬂhﬁ""(xt)
pars

(48)

can be shown to be

887

J. Math. Phys,, Vol. 17, No. 6, June 1976

H(a, 13;7, G;X')
=exp[(ay+ 86) sechx, + (¥6 — a)tanhx,]
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Systematic use is made of the Riemann function to find the conditions for the existence of the kernel of the
inverse problem at fixed value of the angular momentum. When the reference potential is the centrifugal
one, only an I[-dependent condition on the potential must be required in the Marchenko case; in the
Gel'fand~Levitan case, the condition is I-independent. When the Coulomb potential is included in the
reference potential, an exponential decrease of the potential is needed in both instances.

1. INTRODUCTION

By inverse problem, we mean the derivation of the
forces from experimental data. A well-known solution
of an inverse problem was the discovery of the law of
gravitation by Newton from the observations of Kepler.!
The present inquiry is limited to nuclear physics, and it
is assumed that the Schridinger equation can be expand-
ed into uncoupled differential (not integro—differential)
equations. Two different approaches are possible, They
separate inverse problems at fixed energyz from in-
verse problems at fixed angular momentum.?® Only the
latter types are discussed in this paper.

Consequently, exclusively differential equations of
the form

(D(x) Julx, &, 1) S(Bd;z + % - W(, x)) u(x, k,1)=0 1)

are considered.
The function W(l, x) of Eq. (1) is called the potential.

If a part Wy(l,x) of W is known, one defines Dy(x) by
replacing W by W,; the solution is then #;, In addition,
one writes

W, x) = W(l, x) + V{1, %). (2)

Wo(l, x) is called the reference potential, and V the
perturbation potential. In most instances

Wo(l, x) == [l + 1) /x%]+ 2a/x, (3)

that is, the centrifugal + Coulomb potential, V(I, x} is
then the nuclear potential.

To solve the inverse problem is to find the nuclear po-
tential from the scattering data. However, an important
question has to be answered: What conditions must be
satisfied by the nuclear potential for the inverse prob-
lem to have a solution? The present paper is essentially
concerned with this subject and relies on Refs. 3(¢) and
3(d), which are shown here to be compiementary
studies.

The possibility of a solution for the inverse problem
depends upon the existence of an integral representa-
tion for the solution of the equation

D(Mu(r)=0
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in terms of the solution of the equation
Dy(Phuy(r) = 0.

Two integral representations for » are considered,
namely that of the regular solution and that of the Jost
solution: They correspond to two different sets of
boundary conditions imposed on the solution.

Regular solution:
u(0) =u,(0) =0,

u(x) =u0(x} + j;)xKG(x, y)u()(y) dyv (4)
x>y,

The kernel K; is the solution of a partial differential
equation

D(x)KM(x, y) :DO(y)KG(x; y),

Kg(x,x) =% fo" V(s) ds, (5)
KG(xv 0) = 0’
x>y,

Jost solution:

u(x}=uy(x) ~ exp(ikx + o In2kx),

u(x) =) + [ 7 Kylx, y)ug(v) dy, (8
Y > X,
Now one has
D(x)KM(x; }’) = Do(y)KM(x, y)’
Ky(x,x)=% ["V(s)ds, (7
2
lim Ku(x, y)= lim ‘(.}—Ku(x’ ¥)=0,
Xty 0 xX+y—> o y
y > X,

The Gel’fand— Levitan kernel K, is obviously different
from the Marchenko kernel K,, because the boundary
conditions are different.

In order to proceed further, we transform Egs. (5)
and (7) into integral equations which incorporate their
boundary conditions.
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Afterwards we determine the conditions on the nuclear
potential V for Eqs. (5) and (7) to have a solution X, in
the sense of function theory (not in the enlarged sense
of distributions?).

Results of this paper are the following:

If the reference potential is the centrifugal one alone,
in the Gel’fand— Levitan case the condition on the be-
havior of the potential is independent of the value of the
angular momentum; but an /-dependence appears in the
Marchenko case.

In both cases the presence of the Coulomb potential
requires an exponential decrease in the nuclear
potential,

This agrees with Refs. 3(c) and 3(d) for the Jost solu-
tion but extends the study to regular solutions.

2. MATHEMATICAL PREREQUISITES

A. Riemann solution
The Darboux hyperbolic partial differential equation®

D(X)R(x,y; s, u) =D()R(x, v; s, %) (9
with the conditions

R(x,y; x,9) =1,

3R_OR

= w Fy—=yu+
dx 9y hen x+y=u+s, (10)
__8 = ——a hen x =-S5
ax = ay whe - y =u-=S,

is considered. The solution R is the Riemann solution®
for Eq. (9), which plays the same role for hyperbolic
equations as the Green solution does for elliptic
equations.

Coordinates (x,y) are called physical variables. In-
stead of the physical variables it is often convenient to
use canonical (characteristic) variables. If y >x, one
defines®

2=y -x, 2n=y+x,

(11)

26=u-s, 2my=u+s.

(If x>y, one sets 2t=x-~y, 2§)=5 —u;

7 and 7, are unchanged. )
The following notations are used from now on: Let
F(x,y) be a function defined in physical coordinates and
x(&, m, y(& n) the transformation from physical to char-
acteristic variables, we abbreviate systematically the
notation:

F& n)=F(x(& ), (&, ),

even though the formal dependence of F on its variables
changes.

Equation (9) takes the standard form in characteristic
variables. R(&, n; &), ;) is now the solution of
2R
a&am
with
A(E, "7) :[W(g + 77) - W(E - TI)],

~[a, nlrR=0 (12)
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while conditions (10) become

R(&,m; E,m) =1,

R _ . ...
Té—o if n=mn,,
OR _ ..

B. Integral equations for the kernels K¢, Ky

With the use of the Riemann function R, defined by
Dy(x)Ry=Dy(y)R, (14)

Egs. (5), (7) are replaced by Egs. (15), (17), below; the
equation for K. is

1 {(xey) /2

KG(xy y) =2 (x=y) /2

ds V(8)Ry(x,; s, S)
+3 f:yds V(s) f:ﬂsduKG(s,u)Ro(x,y; s, u)

+3 f(::) 1298 V(s) f_:ﬂ_s duKe(s, u)Ry(x,v; s,u)

1 (%
2 Jixayy /2

ds V(s) f:x_s duKg (s, wRy(x,v; s,u)
(15)

(x+y) /2

KG(xy y):% f(x-y)/g ds V(S)R(](x,y; S, s)

+3 [ [, duds VI)Ko(s, Ro(%, 3; 5,u). (16)

The domain D; is given in Eq. (15) and shown in Fig. 1.
The equation for K, is

Ku(%,9)=3% [, |, ds V(S)Ry(x, 35 s, 5)
L f(xeyr /2 FSax
+4 fx #9112 g5 y(s) fy_m ds Ky(s, u)

XRy(s,y; S,u) +3 f(;y ds V(s)

)/2
X [T duKy(s, wR(s,y; s, 1) an
or
Ky, 9Y=% [imy, 1248 V(S)R(x, y; 5, 5)
+3 fD” duds V(S)K (s, w)Ry(x,y; s, u). (18)
The domain Dy is shown in Fig. 2 and comes originally

from Ref. 3(b). Proof of Eqs. (15) and (17) depends on
application of [Dy(y) - Dy(x)K(x, y) = V(1)K (x, ) to the

) [

(0.
©.x-y) FIG. 1. Gel’fand—
Levitan domain.

(0. 1:!) -----
2
(O'X—éx) ________ s>u
x>y
0y
0 -y0) .0 [
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(s)

(0x+9)

FIG. 2. Marchenko

(0"_;1) - domain.

0.
0

.0V Oy, ) [

rhs and the lhs of Eq. (18), together with the depen-
dence of R, on its boundary conditions, Equations sim-
ilar to Eqs. (16) and (18) are also found in Ref. 17,
where one-dimensional Schrodinger equations are
investigated.

C. Composition of Riemann functions

Canonical variables are used. One has, as an analogy
with Green solutions,

R(&,m; &, M)

=Ry(&, 15 b, M) + [0 dE’ [’ A2, )
XRy(&,m; &0 m)R(E", 15 £, M), (19)
that is, R=R;+R,AR,

D. Reduction theorems

(a) A Riemann function R is defined to possess a re-
duction of type 1 if one has

|R(&, 5 £, M) | < gL, M/ g(Eq, M) (20)

(b) A Riemann function R is defined to possess a re-
duction of {ype 2 if one has sither

|R(&, 75 &, m0) | <AE M (case a) (21)
or
|R(E, m; &, ) | < (£, my)  (case b). (22)

(c) A Riemann function R possesses a reduction of
type 3a or b if one has

3 g(i,‘?)
|R(E, 5 &, mp)| < T S /(6 m (case a), (23a)
IR, £l < ST Ak m) (case ). (230

Theovem 1: If Ry possesses a reduction of type 1, the
solution of Eq. (19) exists if

R(£,m; £, 1)
=1+ | ffrag [ an' ae, MRE D Bl (29
exists.
Proof. Write
R=Rg(t, m)/g(£, 1)
=150g(£, n)/g(£o, M),
where |R! <1.

Theovem 2: If R, possesses a reduction of type 1,
Eqs.~(15) and (17) have a solution if the modified poten-
tial V(s) = V(s)/g(s, s) has its moment of order zero
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finite and if the potential V(s) also has its moment of
order one finite,

Consider first D; and Ref. 3(c). When {R i<1, the
bound for Kz, which we have developed in the Appendix,
is

{Ks(x,9) | <ia, (x Z Y ) expo;(x). (25)

Now assume for R, a reduction of type 1 and define
K(x,y) =K(x,y)g(x,y), where K=K; or K, and
Ry(x,y; s,0) =Ry(x,y; s, u)g(x,y)/gls, ). (26)

The methods of Ref. 3(b) and the Appendix are used to
get the bound:

|K(x, )| < $g(x, 9)0y((x +)/2) exploy (x)]. (27)

The moments of order 7 defined were

o, ()= fot s*| V(s)|ds (28)

and

KMZ a{(t) =

fl“’s‘ [ V(s)|ds. (29)

Theovem 3: If R, possesses a reduction of type 2a and
if 1 <f(s,u) <f(s,s), then Egs. (15) and (17) have a solu-
tion provided that the potential V(s) and the modified
potential V(s V(s)f(s, s) have respectively zeroth order
and first order moments o, and 0; finite.

Using again the methods of Ref. 3(b) and the Appendix,
one obtains

|K(x, 9) | < Sog((x +9)/2) exp[5, () [f(x, ). (30)

Theorem 4: If R, possesses a reduction of type 2b
and if f{(s, s) > f(s, u), one obtains

|K(x, ) | < £5,((x +%)/2) exp&; (x). (31)

Therefore, a zeroth order and a first order moments
for V are needed.

Theorems 2, 3,4 can be combined to obtain the bounds
and the conditions corresponding to the reductions (3a)
and (3b).

3. APPLICATION TO THE KERNELS OF THE INVERSE
PROBLEM AT/ FIXED (NON-COULOMBIAN CASE)

By defining

1-2z=1+

1
8xyus(u+s—x-y)(s-u+y—x)

X[ +9)% = (s +%)2] =1 =z [(u = 5)? = (v = %)?]

Bxyus

s = &)= )

X{{u+s)* - +x2=1—2(—1§7§——£1&#——r 32

[+ 92 = (y +x)?) e sa s S

the Riemann function for the hyperbolic equation (9) with
the centrifugal potential as found by Chaundy® is

R:](x,y; s,u):P,(l-—Zz), (33)
where P, denotes the I/th-Legendre polynomial.
In the Gel’fand— Levitan case:

x>y, 0<€0 E<nsn<w=,
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So z is positive and less than one. Hence
-1s1-2z25+1,
And following Ref. 9, p.303, one has, for [ real,

|P,(1-22)|<1, (34)

|R(x,3; s,w)|<1. (35)

The bound given in Eq. (25) exists. The Gel’fand—
Levitan kernel exists. In addition, from Eq. (A6) it
follows that if V is continuous, |K{(x,)|-0 with y.

In conclusion, no ! dependence has appeared in the
bound nor therefore in the condition for K.

In the Marchenko case, one uses the integral repre-
sentation for P;:
P =2 [T le+ -1 e conp
0

with z > 0. Consequently,

[P, (2)] < (22)". (36)

In Ref. 3(d) it was shown that for 0< {;< £<n<s <=

1-2z<2(n+ &)(ny - £/ (n- E(ny + &),

which implies, in the Marchenko domain, where y =x,
1-2z<2(y/x)s/u.

Therefore, the Riemann function possesses a reduction
of type 1 modulo a multiplicative constant
|RY(x,9; s, |<2[2p/x)s/u] =4'g(x,)/g(s,u) (3D)
with g(s, s) =1, We write

Kfx,v)=3% [ ds[V(s)4' 4" Rl(x, y; s,s]

+ [ f,,, A dsV($)8' K (s, u) (47 Ri(x, 3 s,00).

(38)
Theorem 2 shows that if the first two moments of the
potential V{(s)=4'V(s) exist, one has

| Ky, )| < 5(0/%) 0y((x +9)/2) expl o, ()], (39)

From now on, as in Eq. (39), whenever K, is concerned,
0, and o will refer to V not to V; this definition is fol-
lowed consistently until the end of this paper. Accord-
ingly, one defines

9= f(xw) s2 V(s)ds.

In the last equation, the integration variable s is such
that

25 >x+y; then [2s]'> (x +y) =,
¥ oyl(x +9)/2) < 2 oy ((x +)/2),

where g; is the moment of order ! of V. So
| Ku(x, )| < 3(2/2) 0,((x +)/2) exploy ()],

If 0; exists, K, exists, and condition (7. 3) is obvi-
ously realized.

(40)

If the moments may be extended from zero to infinity,
the regular solution is finite everywhere, and the Jost
solution behaves like (1/x)! at the origin.
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4. INCLUSION OF COULOMB POTENTIAL IN THE
REFERENCE POTENTIAL

A. Study of the Riemann function

Although the Riemann function corresponding to the
Coulomb potential is not known, some limitations can
be expressed for it.

Let R! be the Riemann function for the reference po-
tential of Eq. (3) (Coulomb + centrifugal). Then Eg. (19)
is valid with

A(E, 1) =~ 4at’/(n?~ £
(41)
R=R!, Ry=Rj.

According to Theorem 1 the problem reduces to study-
ing the equation

ﬁé(ﬁ, s g()s n()): 1+ IB } fg:dgl f;b d'f],

X[E /(0" = EDRYE, 05 £, M) (42)

In Eq. (42) (a, b) is the couple (ny, 1) or (1, 1,) according
to whether 7, is smaller or greater than 7 (the smaller
regularly preceding). Since n’ > £/, all quantities in-
volved in Eq. (42) are positive. We define with G, M
indices

Bc =4a, By=4x4a,
Roc(&,m; £, mg) =RE(E,m; &, 7o),

RE (&, ;5 Eg mp) =4[+ )(ng = £)'/(n= &) (ny + £)]
XRICM(g’ 77; EO’ 770): ‘R’CM|< 1~
Suppose now a separable function ¢(£')¥(n’) such as

£/ -7 < o(EN9(M) exists. (43)

Then each term E‘CW of the series obtained in solving

Eq. (42) by successive approximations is dominated by
the series p5™, which is the solution of an equation
analogous to Eq. (42), where £'/(n"2- £'?) is replaced

by ¢(£)%(n’).
On the other hand p§’ =3 rqpd " is the solution of the
second order partial differential equation:
9%z
a&am
The minus sign corresponds to the Gel’fand- Levitan

and the plus sign to the Marchenko cases. Equation (44)
can be solved exactly. Following Valiron, !’ we define

#{g|o(Hv(n) =0. (44)

v=[lo(&) as’ [y dn’ (45)

and look for a solution z =®(»). Such a solution fulfills
the conditions of a Riemann function if ®(0)=1. In fact
E=£, or n=7, implies v=0

] ]
and either K z

377: 0 or 3 =0,
The function ®(v) satisfies the Bessel equation
v®"(v) +@'() ¥ |8 2(@) =0. (46)
M. Coz and C. Coudray 891



Therefore, one has

z2=8(v) =J,(VFaIBT0) =1+ |B|v+ |8 |20?/2?
+n=-+(i)"(ﬁ|"v"/(n')2+.,,.
Therefore,
2(&, M5 o, M) =pE(E, M5 gy M) (47

This shows that the series p} converges uniformly for
every set (§,m; £, 7, and moreover that the series
Ré converges uniformly and absolutely.

The bound for z (and for R%) is independent of the
sign of v

v > 0 (Gel’fand— Levitan domain):

Jo(V=4181v) =I,(2v 1B 1v) < exp(2V [B1v), (48a)
v <0 (Marchenko domain):
J(VEATBTD) =1,(2V T80T < exp(2/ T8V ). (48b)

To use the preceding, we look for a separable func-
tion ® which satisfies Eq. (43).

For the Marchenko domain, Gugushvili and
Mentkovsky wrote

{0 d.E f
UT) =T e (49
1v |< a(ny - &), (50)
So
Iﬁlcu(ﬁy U 770)' < exp(4V 18T(m, = Ep).
In the Gel’fand— Levitan case one has
1 1 1
ne - o VW=t V= £’
v ¢ dg’ n dn'
€ Vny - & noﬂf- 3
=4[‘/770-£0-‘\[770'—5][\”1—5—‘/50—5] (51)
v - £y V- E<47, (52)
The function ¢ therefore provides
|RLo(£,m; £, mp) | < exp(4VTBTD). (53)
8. Consequences for the kernels K
In the Marchenko case one has
1 . < al (n+&mg - ‘Eo))l
\RCM(gs 3 §0, TIO), <4 ((n_ 5)(1704_ 50)
x expl8(2)' VTl (n, - & J- (54)

I I=0, R, possesses a reduction of type 2b, with

f(go, 710)=exp[8v lal('r)g— 505 J (55)

so

fls,w) =exp(8V1alsd =f(s, s),

Sflx,v) =exp(8V Talx) > 1. B
Then one defines V(s)=exp(8v Tals)V(s), and obtains
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| K%, )| <35,((x +)/2) exp[ G (x)]. (56)

1f 1#0, 47 R%L, possesses a reduction of type 3b. Ac-
cording to Eq. (38) we define

V(s) = V(s) exp[8(2)'VTaTs]. (57)

Equations (15) and (17) have a solution if both go(x) and
g (x) exist, We have

|Ku(x, 9) | <5(5/2) Gyl(x +9)/2) exp[,(0)]. (58)

To conclude the Marchenko case, one may write a bound
for K, including the moment of order I of V(s):

\Ku(x: 3’). 3(2/x) 0,((x +9)/2) exp[o,(x I (59)
so the existence of the kernel corresponding to the /th
partial wave is tied to an /th moment of V(s).

In the Gel’fand~ Levitan case, one has

|REG (£, m; gy o) | < exp(aVTBTN). (60)

Equation (60) is ! independent. For all /, R,; possesses
a reduction of type 2a with

flx,v) =expl4vV 1BT(x +9)/2 |,
fs,u)=exp[4V 181(s +u)/2 | < exp(4V18]s).

Theorem 3 applies and requires the existence of ag{x)
and of oy(x) with 0, defined in terms of V(s)= V(s)
Xexp(4v 181s). Then

|Ks(x, v) | <% explavVTRT(x T3)/2 loyl(x +3)/2) expl&, ()],

The existence of K is again independent of the value of
l.

5. CONCLUSION
Three remarks may conclude this short study.

—In the Marchenko case, and for the two reference
potentials studied, our results concord with those of
Gugushvili and Mentkovsky [Ref. 3(d)] and with Ref. 3(c),
that is, the necessity of the existence of the lth order
moment for the nuclear potential.

—In the Gel’fand~Levitan case we have improved the
bound of Ref. 3(c), and found a bound independence of I.

—In the Coulomb case, in both instances, it might
be possible to improve the bounds given here. However,
to do this, it would be necessary to obtain the Riemann
function itself.

APPENDIX

The bound of Ref. 3(c) for K. is improved. The solu-
tion of Eq. (15) is found by successive approximations
and we make the assumption that IRy(x,¥; s,u)| <1. So

KC(;O)(x,y) :"2‘ f(xw) /2 (Al)

(x=¥) /2

ds V(s)Ry(x,v; s, s).

K& (x, y):;ff duds V(S)Ry(s,y; s,w)K& (s, u)
(A2)

|KO (x, 3) [ < 3log((x +9)/2) = o((x = 3)/2)].

M. Coz and C. Coudray 892



And we obtain the following estimates
|k (x,9) | <3 oyl(x +9)/2),
|K&(x, ) |

\zf ds |V(S)’f dulz oy((s +u) )/2)]

LI

(x=y) /2 sdu[% 0’0((3 +u)/2)]

L+ (% ds |V(S) ’ f:x_s

2 Jix+y) /2 dulz oul(s +u)/2)]

<so((x +9)/Dx =) 7 ds |V(9)]

+§[Zs—(x—y)]f("°y ds | V(s)]| (A3)

x=¥) /2
+3[2s = (x +9)1 [, , 45 | V(s)]]
<toy(x+9)/2) [ s|V(s)|ds

+f(”'” s’V(s)lds+f(:w)/as'V(s)|ds

xX=¥) /2
=3 [, IVis)ds =5 +y) [ [V(s)|ds],
|K(x,9) |
<szo((x +9)/2)[z f(:_y, S V() |ds
1 (x= :)/ZS!V(S ‘dS fxw)/ SlV(S)’
—3(e=0) oo IV ds—5(x +9) [Z | V(s)|as),
HLED, ps VO lds = (=) [22 [V(s)|ds] <o,
z[f(,c+ ),ZS|V(S )|ds = (x +y) fxm/zds]V(s)HsO
for x +y >x,
|K&(x, ) |
<to(( /2L, sV s+ [ 25| v(s) |ds).

Therefore,
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|K(x, ) [ < 3oy{(x + 9}/ 0y (%) = 63 ((x =) /2)].  (A4)
A fortiovi

K& (%, y) | < 50((x +9)/2) 0y (). (a5)
In the same way

|K(n)(x, y) I S%UO((}C +v)/2)(1/n! )0’1("'”(3()

X[oy (%) = o ((x - ¥)/2)]. (A6)
So we can conclude, a fortiori again,
| K§(x, )| < $oy((x +3)/2)o{™(x) /! (A7)

The series Kg(%,v) =7 (K8 (x, y) converges uniformly
in the interval 0 <y <x, and the inequality

(K (x,9) | < L oy((x +9)/2) exp oy (x)] (A8)

holds, which can be compared with Eq. (1.3.3) of
Agranovitch and Marchenko [Ref. 3(b)].

In addition by (A2), (A4), and (A6) each term of the
series goes to zero with v, It follows from (A7) that
K;(x,y) vanishes when vy approaches zero.
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Sufficient conditions for the existence of a continuous translation operator are found in the case of a system
of differential equations in which the matrix potential has the singularity of the centripetal term. The
sufficient conditions are found in terms of moments of the nuclear potential. The method used employs the
Riemann Green’s function. Threshold energies introduce a threshold energy dependence into the translation
kernel and lead to a requirement of an exponential decrease for terms of the matrix potential.

1. INTRODUCTION

The partial differential equations for the inverse
problem of scattering have received considerable atten-
tion since Agranovitch and Marchenko’s excellent mono-
graph' (A and M) appeared. Leaving aside the one-
dimensional problem, ? authors who have followed A and
M have limited their concern to scalar potentials.3~®
By so doing they lost the purpose of Ref. 1, where ex-
plicitly matrix differential equations were studied. How-
ever, the primary concern of Ref. 1 was not differential
equations as such; after the results for the nonsingular
case were obtained, they considered an indirect approach
to the singular case via the transformation techniques of
Crum and Krein,?®

Since the work of Gugushvili and Mentkovsky® and
Coz and Coudray, ® it is possible to study directly sys-
tems of differential equations where the singularity
comes from an explicit dependence on the angular mo-
mentum. In the present paper, we consider finite sys-
tems of n differential equations:

[L(x) + A%hu(A, x) = Vu(A, x), (1)

where L, A, V,u are (nXn) matrices. The columns of
u(A, x) are solutions of Eq. (1) which differ from each
other by their boundary conditions. A is the diagonal
matrix of the channel wavenumbers 2y, ..., A,

Ay =Ny, (2)

V is an Hermitian matrix potential which is called the
nuclear potential; finally, the elements of the differen-
tial operator L(x) are

L(x)=D(x) = l(x),

2

Dy;(x) Eg‘};z I lu(x)zl‘—(l};—l‘)‘ 0ij- 3
The solution we are concerned with is the solution which
is singular at the origin and defined by its behavior at
infinity. Our choice of solution, that of Ref. 1, is dic~
tated by the relationship of this solution to the § matrix.
The matrix solution H{A, x) for the homogeneous system
is the Riccati Hankel function:

Hyy(A, %) = = ixh® (020) 8y = — iV ax /2 Hi%) 15(Mx) 6y

=(=)"H,(= A, %), (49
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The Green’s function for the homogeneous system is
the diagonal G function matrix:

Gy(A; x,y)=0 fory<x
Gis(8; %, 3) =i(=) @A) D (D (= Ap)
= = AORP(A)]8y; for x<y.  (5)

The irregular matrix solution F(A, x) is then defined by

F(A, ) =H(A, x) = ["GA, %, ) VOIF(A, y) dy,  (6)
where its boundary conditions have been incorporated.
We consider the possible integral representation for

F(A, x):
F(A,x)=H(A, )+ [ "K(x, 9)H(A, ) dy. ("

The case where all A; are equal is studied first. Then
no dependence on the threshold energies appears in the
translation kernel K(x,v) of Eq. (7). The general case
is investigated in Sec. 4. Sufficient conditions for the
matrix K to exist are the goal of this paper.

The kernel K is connected with the solution of the
inverse problem as is seen from Eq. (9) below. It satis-
fies the matrix partial differential equation

[D(x) = D) K (x, v) = [L{(x)K(x, ¥) = K(x, y)I(v)]
= V(x)K(x, v). (8)

The boundary conditions for Eq. (8) are

K(x,x)=% [“V(s)d (9

limK(x, y)—hm K(x y) = (10)

g0 Yo

The development of Eq. (8) with its conditions (9) and
(10) is sketched in Appendix A. The same type of equa-
tion is found in Ref. 9. The kernel K is therefore con-
nected with the resolvent of Eq. (6). The equation defin-
ing K belongs to the hyperbolic type and our work is de-
pendent upon results for these equations in Refs, 10 and
11, which we extend here beyond scalar interactions.

2. THE RIEMANN’'S SOLUTION AND NOTATIONS

Equation (8) is rewritten explicitly
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(%—l‘—(f;z:i))l{u(x, y) = (}%22 "'bi%;_l)) Kyy(x,3)

+Zk; V() Ky (x, 9). (11)

It is solved using Riemann’s method, which is recalled
now.'? A Riemann solution R(x,v; s, %) is defined. It
satisfies

a2 1(l,+1)
(- 1) 5, 355,10

& L +1))

= - ; 12
(25)-2 Y Rl](xyy9s’u): ( )
Ru(x9y;x,y)=1’ (13)
aR+ aR—O if X=u-S (14)
Ty Ty Ry ATE=S

_aR__aRzo ify+tx=u+s (15)
ax 3y )

With the use of characteristic curves, Eq. (11) with
its boundary conditions is solved by the Riemann’s
method, and one has

K3, 9) =% [ieny 12 Ris(X, 355, $)Vy(s) ds

Y+ Sax

L ((xeyy/2
SENANCEL N b

Ri!(x’ ¥; S, u)

XE V,k(S)Ku(S, u) du
k

+1 f(:,,w/zds fs”s'”Ru(x,y;s,u)
x?v,h(s)KH(s,u) du, 0<x<y, (16)
We will shorten our notations by writing
Ky(x,y)=3% f(:,,,/zR,,(x,y;s,s)V,,(s)ds
+3 f fD oy B (%, 95 8, %)
ka}V‘k(s)K,;,(s, u) duds, a7

with du preceding ds in the double integral. [ (x, y) is
the integration domain of Fig. 1.

Together with Riemann’s solution, we shall introduce,
for each matrix A, the matrix of its absolute values |A|
whose elements are

}AJU: 'Azj]- (18)
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If A and B are matrices, we will write A< B if
|Ay|<| Byl for alld,j<n.
Clearly, Eq. (18) implies
lasc|< |A| |B] |c]. (19)
For each matrix A, we will also define a norm llAll by
lAll = max 5 [Ag |, (20)
i o
Clearly, ilAll introduced by Eq. (20) has the usual prop-
erties of a norm.'?
3. APARTICULAR CASE

A special case is studied now since it allows us to
use standard matrix methods and to indicate how results
can be obtained. It contains an extension of Marchenko’s
results.

This special case is obtained by writing
[D(x) = U{x) K (x, y) =[D(y) - 1) K (x, y) = V(x)K(x, v).
To be more specific, Eq. (11) is replaced by Eq. (20):

& L +1 & L +1)
(-2t (-2 ot

+ 20V i (0K (x, ).
k
However, the boundary conditions which K should satisfy,
i.e., Eqs. (9) and (10), are retained.
The Riemann functions to be used are the solutions of

@ L3, +1)

<W '—x'r——)Ru(x,y; s, u)

aé 1, +1
=<W—‘L(—;r—)) Ryy(x, y; s,u). (21)

We can define a Riemann matrix by
[D(x) = 1(x)R(x, y; s, w) =[D(¥) = 1 R(x, y; s, u).

Using Chaundy’s results, Ref. 9, one can write
R(x,y;s,u)={P, (1-22)}5,, (22)

with

2=(1/16usxy)(x +y—u=s){s—u+y—-x)(u+y+s+x)
X{u+y=s~x), (23)

as illustrated in Ref. 6. Instead of 2 we use Chaundy’s
variables x; and x, defined as follows

u+s—x-y)(x—z~—s+u)
x1= 4xs 3

Ay —u—s)x-y+u-s)
2= 4uy s

1-22=1-2x; — 2%, + 2xyx,,
and write
R(x,;u, 8) ={Py, (1 = 2% — 2x, + 2x,x,)8,}.

In the Domain /) (x, y), in Fig. 1, the following inequali-
ties are satisfied:

U=S<Y—X, (24)
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u+szy+x, (25)
uzs, (26)
s=x, (27
V=X, (28)

From these inequalities the following estimates can be
derived:

u+s~x-y<2(s—x)<2s by (24),
S—uty-x<2(s-x)<2s by (24),
u+y+s+x<2m+s)<4u by (25) and (26),
u+y~s-x<2(y-x)<2y by (24). (29)

While x; is negative and
- %, < §/x%,
X, 18 positive

_(uts—x-9)y—x+s-u) _(ut+s)luty—s-x)
- 4uy - duy

xz ’
since one has
Uty—s=-x)=(y=—x=-s—u)=2(u-5)=0,

Therefore, one obtains

Osx,< 1, (30
We rewrite the argument
z2=(1=2x) - 2x,(1 = xy) (31)

with the two parentheses positive. Equations (29) and

(30) imply
l<sxs1-2x% <3s/x, (32)

The argument X of the Legendre functions being greater
than unity, one has

|P,(X) | < (2X)} < (65 /x)". (33)
Consequently,
[R(x,9; s, |< DM x)CD(s) (34)

where the diagonal matrices D and C have the following
elements:

C“.:_—ﬁlibn.’

DU(S):SHGU'

(35)
(386)

The integral equation for the matrix K can be written
in a matrix form:

K, =% [ ,,Rx,5,;5s,8)V(s)ds

+%ff[)u'y)R(x,y;s,u)V(s)K(s,u) duds. (37)
We use now the reduction method of Ref. 6b and
define
K(x,3) =D (0)K(%,3), (38)
R(x,y;s,u) =D (x)R(x,y; s, W)D(s)C (39)

with
|[R|<I (matrix unity).

With these reductions Eq. (37) becomes
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K~(x7y) :%fn

(eowy 72 % 95 S, $)D(S)CV(s) ds

+% f f[) (x,9) ﬁ(x, ¥; 8, u)D(S)

XCV(s)D? (s)Iz(s, u)yduds,

(40)
We are led to define the two interactions
V(s)=D(s)CV(s),
W(s) =D(s)CV(s)D(s), (41)

which should allow us to use the estimates of Appendix
B. We decide here to proceed otherwise for a better
interpretation of the conditions we obtain.

Equation (41) is rewritten as

I}(x,y):—‘z- )%(x,y; s,s);(s) ds

(x+y) /2
+ffD(x,y)ﬁ(x,y;s,u)W(s)Iz(s,u) duds  (42)

and solved by the method of successive approximations:

Iz(x,y)=.§613‘"’(x, ) (43)
where
KO(%x, y) =§f(:w)/z§(x,y; s, S)V(s)ds (44)
and
K™(x,9) =4[ Iy (xmls(x,y; s, W)W(s)
X K1) (s, ) du ds. (45)

The following bounds are found for the different terms
of the series defined in Eq. (43):

IR WAL EIEEE R E N

|K~‘“(x,y)1S%fo (x.y)lﬁ(x,y;s,u)l [ w(s)|
X |K (s, w)|duds

<5 [ IWs) s ds of(x +3)/2). (47)

More generally one has
| K™ (x, )]

< % fx"’ dxn-lxn-l \ W(xn-l) l ‘ﬁ‘:-l dxn-zxn-z { W(xn-z) ‘

Koo [ 7 x| W) [ o(x +3)/2). (48)

We determine now necessary and sufficient conditions
for a convergence of the series (43) which is both uni-
form and absolute. These conditions, however, are
simply sufficient conditions for the existence of K. For
the series (43) to converge uniformly and absolutely it
is necessary to impose

J2 V() lds <, (49)
LT w(s)|sds <. (50)
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The potential V,;; should have a moment of order [, from
Eq. (49) and a moment of order (/; -, +1) from Eq.
(50).

To prove the sufficiency of these conditions, norms
are used as in Appendix B, With Egs. (49) and (50) one
can write

NE (x, y)Il < £7((x +9)/2) exp ()], (51)
with

W(x+9)/2)= [o  IV(s)lids (52)

)= [liw(s)llds. (53)
Equation (51) defines an estimate for the norm of
K(x,y)

(1K (x, )| =D () IK(x, )1l (54)

From Eq. (54) it can be seen that the matrix K(x,y)
when K satisfies Eq. (51) is a matrix of absolutely in-
tegrable functions with respect to y.

A physical application of this section is that when all

the /; are equal
=1, (55)

Equation (55) contains as a particular case
Marchenko's study where all the /; =0, From what pre-
cedes, moments of order / and one should be required
from the elements of the matrix potential. So we state:

Theorem: If

a0 = [Tt{vp)|dt <,
o,(x):f:t’|V(t)[dt<oo,

then an integral representation’ exists for the solution
of a partial differential matrix equation with all ! equal,
and one has

/2 1K (x, ) < 2oy ((x +3)/2) expl oy (%) ].

4. THE GENERAL CASE EQ. (11)

To follow the same method, we need to use the
Riemann’s solutions of Eq. (12). These two can be found
in Refs. 10 and 11:

4,1
) s ) =YC[ 0t
Rn‘(x’y’ S,u) [xl’xz]

11
x| 0h | = -
o)==z

- 26, [ Py (1= 2% + 20, 1)P] (1= 2x,8) i,
(56)

where 7 is a Chinese letter, to be pronounced “pa,” in-
troduced by Chaundy (Ref. 10).

Equation (56) is integrated by parts to get

Ry =Py ,(1-2%,) - 2%, fO‘ Py,(1 = 2x,0)P; (1= 2%, + 2x,1) dt.

Now we consider
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I=1](=1) fo‘ Py (1= 2x,1)2% Py (1 = 2x, +2x,0) it

< foll[- 2%, P] (1~ 2%, + 2x,9) | dt. (57)

To get Eq. (57), we used the fact that |1-2x,f1<1
implied

[Py, (1= 2x,0) [ < 1.

The integrand in Eq. (57) has a constant sign since P,
is an increasing function of its argument whenever the
latter is greater than unity.

Consequently,
1
1< | f1(= 2P, (1~ 2%, + 230)|

< Py (1-2x).

The estimate for R;; follows:

|Ry;| < (Bs/x)'i + 1< (Ts/x)'1, (58)
Back to Eq. (17), we use again reductions
(/XK =K,,,
Ry= (1/x'1)§“(7s)1¢, léu |<1,
‘7{1 =(7s'")Vy,
Wy =(1s')Vy, /5,

(59)

Thus we write Eq. (17) as
Ky(x, y)=%f(:+y)/23u(x, 93 Sy 8)Vyy(s)ds

+ %f f[)(x'y)Rij(x’ ¥ S, ll)

X7, Win($)Ky (s, ) ds du. (60)
R

So we will get

| KO, 9) | <4 [ Viy(s) |ds,

-
(x+v) /2

~ - (61)
K 6w <2 s 12 Wl | K0, ) [as.

Equations (61) are similar in form to Eqs. (46) and (47)
when the latter are made explicit in 7 and j. The analy-
sis of the previous section applies therefore, and we
can state the theorem,

Theorem: ¥
o) = [TtV (0) [t de <,
oy () = f;tl‘ | Vi) [dt <o,

then an integral representation’ for the solution of the
partial differential matrix equation exists, and one has

D ()IK(x, y)ll < zn((x +3)/2) exp(£(x)]. (62)

In Eq. (62) the definitions

©

Wx+v)/2)= [ Ivisds ne)= ["llw(s)lisds

x+v) /2

were used with V and W taken from Eq. (59).
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We proceed now to remove the restriction that all the
A;’s should be equal. If they are not equal, the K;; ele-
ments of the K matrix are the solutions of the equation

02 Ll +1
(3;2“*2“‘(—;2—-))"“"" »)
(63)

2 + )\jz_li(zég__l)>](”(x’y)

_( :
“\oy?
+ Zk; Vlk(x)Kkj(x’ y)’

which introduces a X dependence in the K matrix.

We need now the Riemann solution X;; for the partial
differential equation:

02 L,({1,+1)
<-a‘;z+7\¢2———r—‘ ;C Xy

a2 L, +1)
(-2,

To obtain an estimate for these X;;, Theorem 1 of Ref.
6b is used. Using characteristic variables (£, n, £y, 7,)
instead of the physical variables (¥, y; s, #) and denoting

X(‘E: n’ 50, 7’0) EX()C, y’ S,u),
R(E) U g0’ 710) ER(X, Y5 s,u),

(64)

we have
X;,(TI, 7; Eos 770) =R ”(gy n; Eo» 770) + f:qd‘g’

x [10dnR (& m £, 1) E = NP

x)({j(gly 77', goy 770)- (65)

Since |R,; < (7s/x), we have

IRy < (1&g = o) /(= DT,
We set

Ris :/évw“(io -/ (E=mT,

Xig =Xyl UEg= 1) /E=0) T,

and obtain the reduced equation for )‘( e

Xis(& 15 £, 79)
=R (&, m; &, mg) + [0t [Man’
XR 455 15 &, MG = AAK (' £, ).
From this Eq. (66) we get!*
X158, 15 £, ) |
sexp[z(lkﬁ_sz‘ |50— 5‘ ]no_nbt/z]
\/<~4;(x,y; s,u)|

<expl2(|A2= 22| lums—y+x| luts—y-x|)/2].

(66)

Now we have from Eq. (29)

Uts=-x=-y20, ut+ts-y-x<2s,

U=S+X=-Y<s0, S—ut+ty-x<2s, (67)
Setting
Bazsuplliz- )\jz], (68)
i,

we obtain the estimate
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IX (%, y; 5,0 | < (1s /%) exp(48s),
valid for all 7 and all j.
Now we define
ﬁu(s) =(18)"4V4(s) exp(4Bs),
Wii(s) = (D' s 470V, ,(s) exp(48s).

The equation for K;; follows:

(69)

Ky(x,9) = Xu(x,y,'s,s);“(s) ds

L.
2 Sy 12
+3 [ f[) BVATICATER W? Wals)

XKyi(s,u)duds, (70)
Equation (70) yields

©

KO (x, y)ll <4 [ | V() ds =4m((x +%)/2),

(x+y) /2

(71

and
1K D (x, )1l < 30((x +9)/2) £(x),

where we defined
£ = ["Iw(s)lls ds.

By mathematical induction we obtain again
K (x, )1l < 3n((x +)/2) exp[ £(x) ],
which provides the estimate
D (x) K (x, v) <3 exp(28 | x [ )n((x +9)/2) exp[ &(x)].
(72)

Equations ('72) and (62) are very similar; the main
differences are the definitions of the involved nuclear
potentials and the presence of the exp(28|x1) factor.

From Egs. (63) and (72) it is seen that threshold en-
ergies have two consequences:

(a) The threshold energies appear explicitly in the
translation kernel;

(b) An exponential decrease is required from the nu-
clear potentials, the measure of this decrease being
expressed by

4 sup( ; 22— sz l iz,
1,4
Introduction of Coulomb forces in the scheme does not
modify the method of solution, the Coulomb interaction
being a scalar operator. Conditions similar to those
of Ref. 6b should be superimposed on the ones formulat-
ed in the present paper.

APPENDIX A
Let A, and A be two partial differential matrix
operators
dz 42
A =R W) = V(x) =R Wi(x),

2

Ay=asy = W), (A1)
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Let now a transformation X be defined by

Xf=1f+ [ K(x,y)f0) dy. (a2)

In Eq. (A2) I is the identity matrix and f and twice dif-
ferential matrix satisfying

{ limf(y) ~ exp(ikx)

k real.

The transformation X is said to be a translation from
A, to A if for all f’s one has

AXf=XAf. (A3)

By integrations and derivations under the integral sign
the kernel K(x, y) of Eq. (A2) must satisfy the following
Eq. (A4) for X to exist. Equation (A4) is

& &
(21 w1 = Vi) K, 9 = oy 5,3 - e, W40,

d
LHmK(x,y)=lim—

y= o yaro 0¥

K(x,v)=0, (A4)

K(x,x)=% fx” V(s)ds.

APPENDIX B

We consider the partial differential matrix equation

d2 a2
(522 ) L )= VLG5, 9,
L(x,x)=% [ " W(s)ds (B1)
limL(x,y)= lim-a%L(x, y)=0,

By the Riemann method Eq. (B1) is transformed into
an integral equation:

1 w©

L(x,9) =5 [ s V() ds+3 [ [y W(s)L(s,u) duds.  (B2)
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Equation (B2) is a matrix equation similar to Eq.
(1.3.8) of Ref. 1. /) is the domain of Fig. (1). There-
fore, one defines

() = [T Ivis)ids,
i (B3)
o) = [ Iw(s)llds,

and obtains the estimate for the norm of L(x,v),
1L @, v)Il < zn((x +3)/2) exp[ &(x) ]. (B4)

Equation (B4) gives sufficient conditions for the exis-
tence of a solution L(x,y) for Eq. (B1).
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Some new identities of Clebsch-Gordan coefficients and
representation functions of SO(2,1) and SO(4)
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A systematic derivation of various relations and identities among the Clebsch-Gordan coefficients and for
the representation functions of SO(4) and SO(2,1), is given. These relations are essential in work involving
the matrix elements of arbitrary group elements in higher noncompact groups such as 0(4,2).

I. INTRODUCTION

During the past years the concept of internal dynami-
cal groups has been widely adopted, in the solution to
various problems of quantum dynamics, both rela-
tivistic and nonrelativistic. Especially noteworthy is
the infinite component wave equation using the most de-
generate unitary irreducible representation of the non-
compact orthogonal group O(4, 2) which has found many
applications. Although many more physical results are
yet to be computed, this theory seems to be particular-
ly adopted to the composite nature of not only the H-
atom but also hadrons, in particular the proton. On the
mathematical side the group O(4, 2) contains most of the
physical groups like the Lorentz Group O(3,1), 0(2,1),
E(3), etc., and consequently many already known
physical concepts are built into the theory. Recently
we have succeeded in expressing the “Universal” in-
elastic form factors and structure functions of the pro-
ton and spin-0 particles in such a way that a better and
closer study of these functions is now possible. This
has been achieved by explicitly expressing the O(4, 2)-
transition amplitudes in terms of O(4)- and O(2,1)-
representation functions and this further demands a
number of new identities and relations in these rep-
resentation functions and in O(3)-Clebsch—Gordan co-
efficients, The purpose of this paper is to offer these
relations separately and derive them explicitly, The
representation functions themselves are assumed to be
known. We have tried to adopt throughout a unified ap-
proach of using the symmetry and recursion properties
of generalized hypergeometric polynomials, although
here and there we have deviated from this approach for
simplicity.

In Sec. I, we deal with the well-known O(3)-Clebsch—
Gordan coefficients, Smorodinskil and Shelepin suggest
that because of the three “nontrivial” Regge symmetries,
there can be three nontrivial forms (due to Racah,
Majumdar and van der Waerden) of CG coefficient other
than the original expression due to Wigner. We are
able to obtain these expressions through Thomae—
Whipple symmetries of the generalized hypergeometric
polynomial 3 F, of unit argument, Also we derive some
important recursion relations of the CG coefficients
using the recurrence relations satisfied by ;F,. These
recursion relations are extremely useful when one wants
to study the action of the O(4, 2) generators on canonical
basis. We have also derived two identities involving
negative angular momenta and discussed different
asymptotic expressions of the CG-coefficients, Al-
though some of the results in this section are familiar,
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we have derived them mainly using the properties of
hypergeometric functions.

In Sec. I we give some important properties of the
0O(2, 1)-representation function (D;-series) due to Barg-
mann. Using various recurrence relations of the ,F
hypergeometric function we have derived many recur-
sion relations of this representation function and they
are being used elsewhere to compute the 04, 2)-transi-
tion amplitudes. Finally we use the famous Burchnall—
Chaundy multiplication formula to obtain the O(2, 1)
CG-coefficient and to derive explicitly a decomposition
rule for the product of two O(2, 1)-functions. This rule
is extremely useful and enables one to express the
O(4, 2)-transition amplitudes in closed form.

The last section deals with the O(4)-representation
function. There we have derived two new formulas for
the representation function and have expressed them in
terms of Gegenbauer polynomials. For this we have
used the simple differential operator method due to
Strom. We have also given some asymptotic expres-
sions for the O(4)-functions as we find them very useful
for the discussion of the asymptotic behavior of form
factors. Using various results of this paper, we have
explicitly evaluated the matrix elements of finite
Lorentz transformations between the so-called tilted
O(4, 2)-states and have expressed them in terms of two
O{4)- and one O(2, 1)-representation functions. These
results, we believe, are very important and useful for
explicit calculations in the O(4, 2)-theory.

Il. THE CLEBSCH-GORDAN COEFFICIENTS FOR
0(3)

1. Definition and general expressions

The Clebsch—Gordan coefficients! C (1 lym iy |1m)
(or in Dirac’s notation {(I;/,mm,1lm)) are generally
defined as the coefficients in the expansion

b= 2

En=, 2 (U ylymymy | Imyell ful, (IL1.1)

1

(my+mo=m)

where gL(11y - I,1 <l<1;+1,) are the vectors of canoni-
cal bases in the Kronecker product space of two irre-
ducible unitary representations of weights I; and [, of
the three-dimensional rotation group, and the canonical
bases of the Kronecker “factors” are given by ef,}i and
f,f,g, (-1, <m;sl;i=1,2). The weight ! is an integer or
a semi-integer simultaneously with /; +1,. These co-
efficients are physically interpreted as the probability
amplitude for obtaining the total angular momentum
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(I, m) in the addition of the angular momenta ({,,7,) and
(Z2, my). In order to investigate the underlying sym-
metries and invariants of these coefficients under cer-
tain transformations one conveniently makes use of
Wigner’s® 3-j symbol, defined as

L 1 l 2= -
(mii rrzzz _ m): (= V' 2m (@1 + 1)1 2 Ly, | Im)

iy L, 1
— (= 1}~ «1/2 1 2
(-1 @L 1) [”11 My m] :

(IL. 1. 2)

This 3-j symbol possesses the so-called “classical
symmetries”—12 symmetries under the 3! permuta-
tions and the reversal (m; — - m; and m — — m) of the
three angular momenta (/,,l, and /) as well as Regge
symmetries, All these symmetries may be made more
apparent if one considers the so-called Regge symbol, 3

<l1 Iy 1)
mlmZm_

This symbol is symmetric under (i) permutation of the
columns, (ii) permutation of the rows, and (iii) trans-
position about the major diagonal [also transposition
about the “opposite” diagonal—this symmetry is not new
since this can be obtained by the products of (i} and (ii),
but it is convenient], The classical symmetries are
built into (i) and (ii). If one allows also the negative
values of the angular momenta through the substitutions
Li—=4-1,l,~-1,-1, and I =~ -1 (with the triangle
condition |l - 2,1 €I <I, +1,), then one obtains 3! X3!
X2 X4=288 symmetries (3! for permutation of columns,
3! for permutation of rows, 2 for transposition, and 4
for negative values of I). This means that there are 288
identical Clebsch—Gordan coefficients with positive or
negative values of the angular momenta, The physical
origin of the classical symmetries is well understood,
but that of the remaining Regge symmetries is not at
all clear. Bincer! interprets the third Regge sym-
metry (symmetry under transposition) in the classical
limit (¢, and /, large but fixed !) as the symmetry under
the interchange of “body-fixed” and “space-fixed”
frames of reference and this conclusion is based on the
Brussard—Tolhock asymptotic condition® that in the
classical limit CG coefficients approach the representa-
tion functions (the matrix element of a finite rotation)
of the group SO(3).

Uty =1+l L+ -1
ll—m1 lz-ﬂ’lz [-m
Litmy  Ly+tmy I+m

(IL. 1. 3)

A general expression for CG coefficients was first
derived by Wigner, If one imposes the three sym-
metries (under permutations, transposition, and the
product of the two) into Wigner’s expression then three
more nontrivial expressions may be obtained and one
may select them as the ones® due to van der Waerden,
Racah and Majumdar, All these expressions involve a
finite sum with the summand containing five factorial
terms besides the term which is just the factorial of
summation variable. This leads to the possibility that
the CG-coefficient may be expressed in terms of a gen-
eralized hypergeometric function ,F, with p +g=5.
Rose® succeeded in expressing Wigner’s relation in
terms of the generalized hypergeometric function 3F,
with unit argument, i.e.,
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o4 l) o qytgetigem A B1 Iy )l
(m1 my —mpy = O A G T TN

—l—m, —l+l1—l2, lt—m1+1;
X3F2[l1-lz-M+1,—l"lz-mi;l ’

where
A= (- 1)2"™

« +L =) (=1+1 +1)]
(- +INE+ L+ L+ DI+ m)]

y (L - m)! {1y — my)! )1/2
@+ my) 1Ty + ma)l g~ my) ! )

Here the hypergeometric function ;F, is a terminat-
ing series since it has two upper parameters which are
negative integers. For such cases, it can be easily
seen’ that there are 24 such terminating series (in
comparison with 18 when only one upper parameter is
negative) which are simply related one to one, Since
each hypergeometric function is invariant under the
permutations of upper and lower parameters, one ob-
tains the total number of different forms of 3F, (with
two negative upper parameters) to be 24 X3! x2! =288
which is exactly the total number of symmetries of the
CG coefficients. All the different symmetries of such
3Fy may be obtained from Thomae—~Whipple formalism,
and many of them are already used. For example the
symmetry derived by Hardy (in Whipple’s notation?) is

(I.1. 4)

7

Tloyyg, Gy, @4a5]F,0; 4, 5]
= (= 1)"T[ a4, @gay, ¥py4)Fal4; 0, 1],

or

a, b, c;
3F2[d, ¢ 1]
T(d)I'(d-a~b) [a, b, e-c; ]
1]

ST@-al@~0) ¥ 2|1+a+b~d, e (IL. 1. 5)

Using this twice in Eq. (IL. 1. 4) we get the Majumdar
form of CG-coefficients,

(11 , 1
my my —mly

e 1yprman LG ) L)

— 1
C=m) @+~ I (- L+ I — my)]

X.F —l-m, =l+li—l, -l+l+l,+1;|
U9l —l4l-my+1;1
(IL 1.6)

Furthermore, the Thomae—Dixon symmetry gives

F,[0;4,5]=F,[0;2,3],

(@I (e)X (s)

F[a: b, C;]_
U4, e; 1] T(@T(s+bT(s +c)
d-a, e-a, s;
><:“F’~’[s—t~b, s+c; 1]’

S:d+e—a—b—c,

(IL1.7)
Using this in Eq. (I 1. 6) we get the Racah form
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(11 I l)
my My —m/p

= (= 1)2%2704 @ +m) g = m) (L+1, — my)!

C-m A+~ Tp) (=L +1, +m))]

—=l+m, =li+my, l+m+1; ] (I 1.8)

X:’Fz[—l—l2+m1, Sl tmy 41 1
Also if we use the symmetry
Tlaygs, oy, ag95]F,[0; 4, 5]
= (= 1)"Ta1yy, 0ggy, 0914l F44;1, 5],
or
Cl—e+c)T(1-e+bT(@T(e)

a, b, c;]_ "
3F2[d, e; 1 ]_(' 1 I'le-a)I'(1 +a+c-e)l'(1+d-e)l(b)

d-b,1-e+c, 1-e+a;
X3F2[1+a+c—e, 1+d-e; 1]’ (I 1.9)

substitute in Eq, (IL 1.8), and then use the symmetry
due to Hardy [Eq. (IL 1.5)], then we get the van der
Waerden form of CG coefficients

( li lZ l — (_ 1)2(12-11)
my My =M [y
(l "'l1 +l2)l(l +m)1(l2— mg)l

I+ L+ I (=T T m) A =1, — my)]

X F. -lz_m% _l1+m1, l'll_ZZ;
Sl -my+1, L=y +my+1;1]"

(I1.1.10)

All the above four forms of CG coefficients are ex-
tremely useful for practical purposes, especially in
deriving recursion relations. There is also the
Rodrigues form due to Akim and Levin, 3

(z1 I z)
17y My — W

=(- l)l-m-Zli

/(l"'lx—lz)l(l-l1+lz)!(l+m)!)
N1+ +) @+ +T,+ 1)

% ((11%)!(11—7%1)1(12 +le)l)”2
- m)1 (T, - my)]

X[ =L+ L) - L+ m) ]
™ —l+m, =1+ ~1y;
X{dzlz-mz (l_z)th[ Li—l,+m+1;z .
(I1. 1. 11)

This expression is particularly helpful since the prop-
erties of ,F; are well understood and widely used.

2. Recursion relations

In this subsection we proceed to derive some very
useful recursion relations of CG coefficients. For this
we conveniently make use of Rainville’s? contiguous
function relations for generalized hypergeometric func-
tions. For ;F, with unit argument we have the following
contiguous relations:

@) (@-b),Fy=aFyla+1]-byFb+1], (IL 2. 1a)
o) (@-d+1)3F,
—a,Fyla+1]- (@-1);Fld-1], (IL. 2. 1b)
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() sed(e-d);F,
=e(a-d)(b-d)(c - d)3F,[d+1]

—d(a—e)(b-e)(c-e);Fle+1], (1. 2.1c)
(d) -edle-ad) Fla-1]
=e(b~d)(c-d)sFy[d+1]
- d{a-e)(c - e)yFyfe +1], (IL 2. 1d)

where s=d+e-a-b-c. When we substitute Eq.
(. 1. 4) into Eq. (IL 2.1Db) we get

iy 1 l
I+1+1,+2)-1+ t72p 71 "2
[C+1 +1+2)(=1+1 +1,+1)] ("% o _m)
Li+% I,+3 l)
1

= + - 1/2(
[ +my+ 1)l - my + 1)) Myt my—-3 —m

1 1
- [(li—m1+1)(l2+m2+1)]1/2(7f;1—i2% f}i;jé _lm),
(IL. 2. 2)
If we use the symmetry given by Eq. (IL 1.5) in Eq.
(1. 1. 4) and substitute the resulting expression in Eq.
(1. 2. 1b), we get

l, 1 1
- 1/2f *1 2
[+ +1,+ 1) =1 +1, +1y)] (m1 y _m)

=[(t +m)(y— my)t? bog b-g )
t 2 2 my—-z Myt+3z —n

Li-% I,-% z)
1/2{41—2 la— 2
~[@y = my) (g +my)) (ml_,_% My— % —m)

(IL 2. 3)
If we again take the resulting expression after substitut-
ing Eq. (I 1. 5) into Eq. (II.1.4) and use the symmetry
due to Bailey, i.e.,

Tloygg, 0yay, 0495]E,[0;4, 5] = T agyq, tgay, 0gas)F,l1;4, 5]

or
7 [a, b, ¢;] Tl-a-c)fd-a-c)'(e)I'{d)
8%2ld, e; 1 | T T(e-aT'(d-a){e-c)T'{d-c)

1-s, a, c;
>(3]'!?2[14—(1—.24»0, 1+a-d+c; 1]’
¢ is a negative integer, (IL 2. 4)

and then substitute the final expression in Eq. (II. 2. 1b),
we obtain

I, 1 1
[+ -+ 1)+ -1)]/? (mil 7;/212 —m)

Li+z lL—-3
:[(11—m1+1)(lz'mz)]“z<n;1_2% 7;212_,_2% _ )

Li+3 l-3 1 )
1/2 172 27 2
+ [, + ey + 1), + my)] <mi+% my—t —mf’

(I1.2.5)

Furthermore, if we combine Egs. (IL 2.1c) and (IL 2. 1d)
then we obtain

sd(e - d)3Fy +d(b - e)(e — d) 3Fyla-1]

- (b-d)c-da+te-b~d)F[d+1]=0. (IL 2.1e)
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We then substitute into the above relation Wigner’s ex-
pression [Eq. (IL 1.4)] to get

[(l+m+1)(l_m)]1/2(li L 1 )

my mp; =

3 1
=[Ot m = mprr(BE B IE )
my =z )

= [ +my + 1), - m2)]1/2(

(1. 2. 6)

Many more recursion relations of CG coefficients may
be similarly derived.

One can also note that the Rodrigues form of the GG
coefficient is very handy. I we substitute Eq. (I 1. 11)
into the recurrence relation’

(a- 1)2F1[a’ Z’} +(c- a)ze[a- L b;]

c; c; z
a-1, b-1;
_(c-1)2F1[c_1;z ]:o,

we can reproduce Eq. (IL 2. 6). Also, if we use the
relation

o a, b; + a+1, b;
(C a l)th[C; 2 ] azFi[c; 2
a, b;
- {c-1),F [c’— 1’; z]: 0,
we obtain

- snaprefl b
[@+l=B)@+1+T+1)] (mi My - m
I

== [ m -yl

L-% 4, 1-}
+[(l"m)(li_m1)]1/2( 11_,,2% : 2;).

(II.2.7)

Finally we show one more relation which we will use
later. This can be easily obtained through the symmetry
of the Regge symbol upon the transposition about the
so-called “opposite” diagonal, i.e.,

LA AL Do+l Lt -1
li—mi lz"'mz l—-m
ll+m1 lz+”’l2 Il+m
=jltmy L-my lL-l+l |

l1+m1 li-mi —ll+l2+l

(z1 L, 1
my My =
=(1 30+ 1+ m) 3+l -m) 1 )
‘z'(li—l2+m1—m2) %(ll—lz—m1+m2) _(ll_ZZ) *
(IL 2. 8)

Some of the above relations have been derived by
Vilenkin!™ ! using group theoretical arguments.
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3. CG coefficients with negative angular momenta

We derive two relations of CG-coefficients involving
negative angular momenta through the substitutions
Ly—=-1-1, l,—~~1,-1, I~ -1-1, Our procedure uses
the symmetrics of the hypergeometric functions and the
final results agree (up to a phase) with Bandzaitis
et al.1? First we apply the Thomae—Dixon symmetry
[Eq. (I.1.7)] to the Wigner—Rose expression [Eq.

(IL 1. 4)] and then carefully recast the hypergeometric
function into the 3-j symbol. We obtain

-4-1 1, -1-1
-m

my My
Ly 1 l
— i — 1\ig+mof 1 2
exp(—im/2)(- 1) (m1 mz -m)'

(O.3.1)
Next, we use the Thomae—Whipple relation
Tlayps, 0oy, 01251 F,[0; 4, 5] =T agy3, @g14, 0151F,[2; 1, 3],
or

a, b, c;
3F2[d, e; 1 ]

_ Ir1-sr'l-e+a)r'1 —d+a)'(d)(e)

T Td-c)l(e=-c)Tl-s)TQ+a-b)T{1+c-0)

1-b, d-b, e-b;
x3F2[1+a—b, 1+c-b1)"

(1. 3.2)

We use this symmetry in the Wigner—Rose expression
and obtain

(-11-1 -,-1 —z-1>
m1 "y -m

Zexp(i"/z)(—l)li*’z-l(li L, ! )

(1. 3. 3)
my My —m

Between these two relations the first one is particularly
very useful and physical and we will find in See. I that
this relation clearly enables us to express the O(2,1)-
CG coefficients in a very convenient way,

4. Special cases

Various special cases of CG coefficients may be
evaluated using Saalschutz’s’ and Minton’s!® theorems,
Saalschutz’s theorem states that if the parameters of
3Fy satisfy the condition 1 +a+b+c=d+e (or s=1)
then the terminating series can be summed as

5 [a, b, c;]: Fdl(l+a-e)L(1+b-e)I'(l+c—e)
72%d, e; 1 I'l-e)I'd-a)T'({d-b)I'(d~c)

(I 4.1)
Thus the Wigner, Racah, and Majumdar forms of CG
coefficients, respectively, satisfy the above condition
(Saalschutzian) when =1, +1,—1, m;y=-1+1, and
my=1I;~1, Minton’s theorem states that if the param-
eters of the generalized hypergeometric function o1 Fy
satisfy the condition @y + @+« -+ a,=f+---+5,
(or s=0) then,

Ay 050 0ay Qp;
pﬂF’[Bh Bz,...,B,; 1]
_rl-aoll-ai):- T1l-a,)
- TA-8)T(A-5y)---T(A=-8,) °

(II. 4. 2)
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This condition is satisfied by Wigner, Racah, and
Majumdar forms when =1, +1,, m=~1, and m; =1,
respectively, Some of these special cases are already
computed through different methods and some of them
are new, We do not give the final results here since
they can be obtained by trivial substitutions.

5. Asymptotic expressions

There are three important asymptotic expressions.
The one due to Edmonds® and Brussard and Tolhock®
is for large Iy and I, but fixed / and in this case the CG-
coefficient approaches Wigner’s O(3)-representation
function. In order to demonstrate this we apply the
symmetry due to Bailey [Eq. (I 2.4)] to Racah’s ex-
pression [Eq. (IL 1, 8)]. We then obtain

(z1 7, z)
my My ~MJg

= (= 1)%2-1p

Crm)l G +m)lC - L +D) 11 +1,—m)!
C=-m)IQ =L+ DI+ =Dy =1, +m)]

%o F. ~l+m, l+tm+1, =l+my;
302 -li+lz+m+1, —lx—lz"‘m; 1]

(I 5.1)
In the limit, 7,7, =~ we use Stirling’s formula
x1 = v2rx**1/%e"* and the hypergeometric function 3F,
becomes , F; apart from some obvious coefficients,
i.e.,

F =l+m, l+m+1, =1 +my;
32 lg'—l1+m+1, —li—lz+m; 1

—F ~l+m, l+m+1;
s 12-l1+m+1;sin2%B ’

where cosf=m[l;(; +1)]"!/%, We then make use of
Wigner’s O(3)-representation function'

D}, (a, B, y)=exp(ima)d,, ,(B) exp(-im’y),
where
_ (+m)-m)!
oy B = U TV 1= )]
X (singR)™™ Ppmsmem (Cosp)

1 ((z+m)1(z-m')1>‘/2

(m-m"! \((-m)l{l+m')!

(coszp)™™

1
. . ot -l+m, l+m+1;

X (cos )™ (sin )" . Fy [m - n?Z +1; sinzéﬁ] ’
(IL. 5. 2)
A

6. An application

and get the well-known asymptotic expression

( Iy 4
my My

When all the angular momenta are large one gets
Wigner’s formula (modified by Ponzano and Regge!®

and, in the extreme limit I;,,,1 —, by Vilenkin!®), In
order to show this, we conveniently use the identity!*

(nz1 nly nl (nl1 nly nl
my my - mi my —m'
2 ¥y 2
= /8% £, J 7 S, Dt wy (e, B, VDR s (s B, %)
XDt (@, B, v) do sinBdBdy.

et @0, @)

The asymptotic condition of the Jacobi polynomial®
limn* Py B (cos(z/n)) = (2/2)"J 4 (2),

n=oo
where J,(z) is the Bessel function, and the identity!’
I 9u4z)d, 02)d, (02)2 " dz
27 1AP L)Y [D (v + HI ],
= if |1 =] sT<lg+1y,
0, otherwise,

where A is the area of the triangle of sides /5, I, and
I, and is given by

013431

1 (30121
2___ = |

A= 16|73 12 0 1

1110

After a short calculation, we obtain

(li Iy l )z(_l)(lz-ll-l)/Zﬂg-m
my WMy — M

x (M A - @ -G =BV (L5.4)

Finally, the asymptotic expression for ly,7,,7,m
> 1, +1,- m is given by Akim and Levin, ® We quote
their result which may be easily seen from Eq.
(I, 1. 11).

I L 1 2Ugelem 1y i
= (- +m+1)em —
(m1 my —m 1) tHm+1) @ =1y~ my)!

% ((l+l1-—12)!(l+m)!(l—m)!
(=L F I~ 1 +1, +15)!

X (= my)t {2 + my)! )1/2
C+i + L+ DI +m) (- my)! .
(IL 5. 5)

Most of the identities and recursion relations of CG coefficients given above have been much used!® to study the
action of O4, 2)-operators on canonical basis. On the most degenerate unitary irreducible representation space of
O(4, 2) one can construct!® the simplest fermion basis |#j*k) by coupling a spin 1 with the canonical basis |nlm), n
being the principal quantum number, and k and m are the magnetic quantum numbers. One gets with appropriate

normalization,

o k-

. 2 +1\'/? (% ji=z j ) ; -1/2p+ i
— Jep=t | Y + - 1) _ 1
T ] O IR G g S Ve E IR

k-0, (. 6.1)

where af ;; =aj, al;,,=a3, etc, are the usual creation and annihilation operators. The 3-j symbol above can be very
easily computed using Eq. (IL 6.2). Then, for convenience, one introduces the parabolic basis |nyny,m) and expands

the canonical basis as
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[nmy = (- 1)m@1 +1)/? 2

(n1+r|2.}:-|m|-1)

where, in the representation space,
|"’2+m’ 7y, n1+m’ n2>’ m>0,

m); =

|n1n2 > {lnb ny—-m, ny, nz—”'l), m <0.

5 (%(n—l) 3n-1) l)ln1”2m>,

3y —ngtm) sty —my+m) —m

(IL. 6.

After substituting Eq. (IL 6. 2) into Eq. (IL 6. 1) we get, for example m > 0 with k, =kz 3 (this £, associated with

should not be confused with parity +),

By = Y, { (- k_[(j+k)(n?+{e_+1) 1/2 1 Y1)
| ni*k) ,w{( 1 e ] (

I ST =L N

1 L ;1
X( 2(""1) Z(n—l) J=—z2 > 1n2+k_+1, ny, n1+k-, nz)ii(_ 1)]-1/2

3y —n +E)+1 sy —n,+k) —(k_+1)

x 2 {(— l)k-[(j+k)(n1+k_+1)]1/2 (l Yn-1)
Bys iy

n+j+z

1 1 i1
X( Yn—1) Yn-1) j-z )}nﬁk_, ng, ntk.+1, my).

ty—n +k) sy -ny+tk)+1 —(k_+1)
We then make use of the Regge symmetry,
( o 1 >=(_ 1),1,,2,,(12 y 1 )
ny My — M g m1 —-m
and the recursion relation given by Eq. (I, 2, 7) to obtain,

2j +1

-1/2
AN I RV o L N
=122 D[ G253 o) v

zn-1)+2 z(n-1) Y

. n=1
Vi (P AT RV ey

The upper state is for £_> 0 and the lower one for 2_<0. The basis inj*k) as given by Eq. (IL 6. 5) is extremely

useful in practice, especially in evaluating form factors and structure functions.

11l. O(2, 1)-REPRESENTATION FUNCTIONS

1. General expressions

Bargmann?®! was first to study in detail the single-
valued, nontrivial, infinite dimensional, unitary, irre-
ducible representations of the pseudounitary group
SU(1,1) [two-to-one-homomorphic to the noncompact
orthogonal semisimple group SO(2, 1)] and the corre-
sponding representation functions in the basis in which
the compact subgroup SO(2) of SO(2,1) with its dis-
crete spectrum was diagonal. After nearly twenty
years different authors?? worked out the representation
functions in the basis in which the noncompact genera-
tor of the SO(1, 1) subgroup of SO(2, 1) with its continu-
ous spectrum was diagonal. In this section we plan to
study some of the important properties of these rep-
resentation functions,

The representation function for the discrete D;-
representation of SO(2, 1) due to Bargmann is

V@, B, 7) =exp(- ima) VX (B) exp(-iny),

where, for m=n

R 1 (m-k)(m+E-131\172 1o men
Vine nB) = (m—n)!( =)t k- 1! ) (tanhzf)
1,420 k—n,l—n—k; ]
X(coshzﬁ) 2F1[1+m—7l; —Sinhz'lz‘ﬁ . (III. 1. 1)
Taking
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2)

Sy —ny+k) 3y -ny+k) -k, miitd
im-1) j-1% W[ =R TH?
4 1 + (= M) r s
sy —ny+k) s(n-nytk) -k n+j+2)
(IL. 6. 3)
(IL 6. 4)
m-1)+3 3(n-1) j ny+k. 1, ny, ny ke, n
nyt+1, ny—k, ny, ny-k.
nytk, ny, ngtk.o+1, ny
ny, ny—k., n+1, nyg—k. /]’ (1. 6. 5)

I x=1-2tanh®38, z{r —1)=-tanh?3p,
3(x +1)=1/cosh?38,

and introducing the Jacobi polynomiall®

vy (P2 11Y° TP TPV
P, (x)_( o )( 2 ) 2F‘[lﬂ).; (x—l)/(x+1)]’
we get,

((=R) o+~ 1)
V:*"(B)_((m—k)l(n+k—1)!

1/2 )
> {tanhzp)™"

X (coshz )" P -1(1 - 2 tanh’34), (L 1

where

[ ] p=b
pru\fp+\fx-1\°(x+1
P¥(x)= — |\ 5
r=2 ()0 G
with P{**(x)=1. Since (n — k) is always a positive in-
teger we can use the identity’

-a, b;
zFi[c.; ]

_(a+b-1)l(E-1)! . -a, 1-a-c;
T (@t+tc-11(b-1)] (=2) 2F‘[1—a_b; 1/2]’

.2)

and obtain from Eq. (Ol 1.1), a more symmetric form

(m=n),
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_ e 1 m+e-1Nlrn+e-1)!
Vi n(6)=(=1) k(2k—1)l [ (m-k)n-k)! ]

k—n, k—m

1 ymen 1 av=2k ’ 5

X (tanhz5)™"(coshzB) 2F1[2k;—1/sinh2%ﬁ]'
(IIL. 1. 3)

One can easily see from the above equation, and be-
cause (n—m) is an integer, that

The latter condition may be used to compute V, ,,(B) for
m <n and furthermore from Eq. (IOL1.1) we have
immediately

Vo alB) = Vark(B).
Equation (III, 1. 4) is in fact, the property of Jacobi
polynomials, viz., P,**(x)= (- 1)°P**(- x). Also from
Eq. (III. 1, 3) one can easily conclude that for large val-
ues of 8 the O(2, 1)-function behaves as,

Ve aB)=(=1y""VE (B)=(-1)""V} (- B). (L1, 4)‘ VE (B)~ (cosh3B) 2%, (IIL 1, 5)
2. Special values and identities
In order to compute special values of O(2,1)-representation functions, we conveniently use Eq. (III. 1. 2). Below
we give those which are much used®;
Vi1,1(8)= ¥n +1(tanhzp)"(coshzp)?,
Vii,2(8)=(n+1/YZ)(n - 2 sinh®%p) (tanhB)™! (coshzp)™,
Vi sB)=(Vn+1/V3)[tn(n - 1) - 3nsinh?3B+ 3 sinh?s B](tanhzﬁ)"'z(coshzﬁ)'s
Vi B = (W F1/2)En-1) (e - 2) - 2n(n - 1) sinh®3 + 6n sinh*36 - 4 sinh®34](tanh38)™* (cosh3p),
Vi, 5(8) = (W F1/V5) [ ggnn = 1)(n = 2)(2 = 3) = § (2 = 1)(e = 2) sinh3p+ 5n(n ~ 1) sinh?28 (IL 2. 1)
— 10n sinh®4B + 5 sinh33B](tanh38)™*(cosh3p)™1?,
V,.2+1,2(B = (1/V6)[n(n +1)(n + 2)]'(tanh3B)™! (coshzp)™,
Vi, 3(8) = (1/¥28)[nn + 1)(n + 2)]'/?[ (2 - 1) - 4 sinh?38](tanh38)"? (coshzp)¢,
V24, 4(8)= (1/V80)[n(n + 1)+ 2)]' *[3(n - 1)(n ~ 2) - 5(n - 1) sinh?38 + 10 sinh*38](tanh38)™3(coshz6)"®,
Vi, 3(B) = (1/¥120)[ (2 + 1) (n + 2)(n + 3)(n + 4) (n + 5)]'/*(tanhB) *(coshz )™,
Vii%a, 1 2(8) = (tanhzB)"(coshzh),
V3ii%a, 3 /2(B) = (n — sinh?3p)(tanhz)™! (coshzf)™?,
VA%, s ;2(8) = [$n(n - 1) — 2n sinh®28 + sinh*38](tanhz8) "2 (coshz 5) ™,
Va5 2(8) = (1/VE)[nGe+ 1))/ tanh6)™ (cosh3s)™, (L. 2.2)
V3205 ,2(8)= (1/V8)[n@m +1)]V/?[(n - 1) - 3 sinh?38](tanhz8)™* (coshzp)™,
V3% 1 (8 = (1/VID) [l + 1)1V 3(n - 1) - 2) - 4(n — 1) sinh®36 + 6 sinh*28 ](tanhB)™* (coshzp) ™.
Furthermore, from the recurrence relations’
(@=c+1),Fy+(c-1),F[b~1; c-1]-a(l - z),Fla+1]=0,
(b-c+1),F +(c—-1),Fla-1;c-1]- b1 - z),F[b+1]=0,
coFy—az,Fla+1;c+1]-c,F[b-1]=0,
cyFy = (- bz, Fila+1;c+1]-c(l-2),Fila+1]=0,
(1= )y Fy+ (b—c)yFy[b—1]+ (c - 1), Fy[b-1;¢ - 1]=0,
¢, Fy— bz, Fi[b+1;c+1]~c,Fla-1]=0,
c(c-1),F—c(c—-1),F[c-1]+abz,Fila+1,b+1;c+1]=0
and Eq. (1L, 1. 1) we obtain the identities
(m = B)/2VE (8= (n + B)!/% sinhBBVIL/R, my /2(8) + (n~ R)!/* cOSREBV YR, mt /2(6),
(m +k = D)2VE (B)=(n~k +1)!/% sinh3BVELSS g 2(B) + (n+ & = )72 coshzBVZ1E et /2(8),
(m +E)2VE (B) = (n— k)2 Sinh 3BV AL g 2(B) + (n+ )% cOShEBV AL 3, s 2(B),
(n— RY/2VE (8) == (m +R)/? sinh3BV L5, o /2(B) + (m = R)! /2 cOShBBY 2} 7, 1 /2(B), (III. 2. 3)
(0 +RYVEVE L(B) =~ (m = )2 Sinh3BVEL /3, 1y 12(8) + (m + R)!/2 coshzBV 74, nt 12(B),

(m =k + DY2VE (B)= (& = D)+ E)! /2 sinh3BV A3

Via, () = [(m ~

(m —n)
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F)(m +k - 1)/ 2 tanh3VEy, o, (8) + [0 ~ k) (n + & - 1)]*/? tanhzp

R/t i 2(B) =R+ 1Y/2 coshzpV L2 na 2(8),

V:;, n-t(B)-
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These identities are very useful to express the O(4, 2) amplitudes® in a much simpler form.

We then use the famous Burchnall—Chaundy multiplication formula, 2

2F1[a b;]zF1 [a:t b’;] Z“’; (@) (b)sle)y

y —_—
c; x ¢y x | o tl{ehlc+rc'+i-1),

!’ ’ .
[a+a +t, b+b +t,} _ (IIL. 2. 4)

a,l-c-t, -1 b, 1-c-t, -1
xan[c’: l-a-t; 1 ’] 3Fz[c’, 1-0-41 2F1 cte'+2t x
Substituting Eq. (III 1.3) in the above, we get [note that we have used square brackets as in Eq. (IL1. 2)]
P s\ [=ps ~py ={pyto)—-T}[-p1 - P2 = (p1+p2) = T [ropsnper
WOV, 6) = ;0[ A T T T T Vi ) (I 2. 5)
where the SO(2, 1)-CG-coefficient** is
[— pr =Py —(pytp)- T] _ (o= 71l Z[Pz— Mg, 1-2p—7, - T;]
By M fy ¥ iy (p1— -2~ 1)1 372205, 1=py+py~T7; 1
% ((291i2P2 +27-D1@pp+7-1)1@p1+2pp+ 7-2)! (g +ps = 1)1
712y + T-1)12p¢ + 20 + 27 2)! (i1y = py) ! (12 =~ p2) !
(2 +pp= 1)1 (py + pa~ py = pp = 7)! )“2
X . 1L 2. 6)
(Bt peFpyFppt7-1)! ¢

Vil

e

If we define, as in Eq. (IL. 1.2), that
-p1 ~ P2 "(M"'Pz)“’]___  1YP2Py e[ (9. + Dy + 27— 1 1/2(‘01 - P2 -(Pi+P2)—T) I 2.7
[#1 M2 Myt po -1 [ (20; *+ 20, ) By M =gt} /)’ (. 2.7)
then the 3-j symbol
<P1 [ 01+PZ+T)
By bo = (Rt pe))’

upon substitution of Eq. (I 1.9) into Eq. (IIL 2. 6), reduce to the Wigner form [Eq. (II 1.4)] since the parameters
of 3Fy in Eq. (IIL 2. 6) are integers. Also, the SO(2,1)-CG-coefficients satisfy the usual orthogonality relation,
for example,

=p1 —pr —(p1+p)=T)[-p1 —p2 —(pytp)-7
» p1 —pz — (py+py [ t 2 1102 =5, I, 2.8
P T T ) B1 Mo iyt g ™ ( )

Furthermore, for the evaluation of the O(4, 2)-transition amplitude between the ground state and an arbitrary state,
one needs only three special values of the SO(2, 1)-CG coefficients., These can be computed by using Eq. (IL 4. 2).
We give here the results:

~p1 —P2 —(01+Dz)]: {(2P1+2pz—1)(2P1+2P2‘2)1(#1+01—1)!(u2+92"1)!(H1+M2—P1'Pz)!)”2
Bi By Mgt Mg (204 = 1)1 (2P = 1)1 (g ~ py) (o = o)} (g + B2+ py + P2~ 1) ’

[—m - P -(01+Pz+1)]:(Q&+2P2+1)(2B1+2ﬁ2—1)1(M1+Pl-1)1(m+pz—1)1(u1+u2-fi—02‘1)!)2(pu ~ paity)
By He Byt ol (201) 1 (2pa) 1y — po) (2 ~ po) (g + g + py + py) ! 1" ’

and

[‘pi - Py —(P1+Pz+2)]=_1_((2&'*'292"'3)(221'*'292)1(U-iipi—l)!(liz"”[)z-1)1(#1+H2—01—P2—2)1>”2
By M2 Mg+ o V2 (20, + 1)1 (2py + 1)1 (g = py)  (ig = P2} (g + 1y + oy +pp + 1)1

X[ (g = py) (g = ps ~ 1)2p5(2py + 1) + (2~ pg) {12 = py — 1)2p1(2p; + 1)

=2y = py) Ky = p2) (201 + 1)(2p, + 1)), (1L 2. 9)

Finally we give an important result derived by using successively the symmetries given by Eqs. (IL 2, 8), (IL 4. 4),

(II. 3. 1), and again (IL 2, 8) in Eq. (HI 2.7):
-py =Py —(pytp)—-71 1 2u1+u2-3n1+1-r[§(ﬂ~1 +tpa=prtpa—1) (gt uetpi—p-1) pyrpep-1+ T]
=(- . (IH.2.10

[Hi Mo Myt pg 1 iy = patpyTpp=1) Z(uy—patpytpy—1) prtpy-1 ( )
This relation is very crucial because it shows that the O(2,1)-CG coefficients are proportional to the coefficients
in the expansion in Eq. (I 4. 2).
3. A simple application

Explicit evaluation of matrix elements of O(4,2) group generators”"25 between the so-called titled physical states
involves the computation of matrix elements of finite Lorentz transformations between those states (see Sec, IV,
Part 3). In the latter case one frequently encounters a product of two SO(2, 1)-representation functions such as
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(ats) /2 I le) /208
Vi d (i) 12, mgs a1ty 12 B VAR Foatot, metinroty s20101 (= B),

and another one with the replacements g8 — - 8, n+—=nj, and ny *—n,. Here n, and n, are parabolic quantum num-
bers and are restricted by the condition n; +ny=n- |2} - 1 (0sny<n- x| -1). For the spin-0 case A=m and

6=0 and for spin 3, x=k.=k -3 (¢ is the spin } magnetic quantum number) and &= +3 when k_>0and 6=- 1 when
k_<0. This  is in fact one of the two numbers!® that characterize the Casimir invariants of the subgroup SO(4) of
S0(4, 2) and specifies the particular representation. From Egs. (OI.1.4) and (IIL 2. 5) we obtain,

Vnﬁt‘('a‘.léﬁ/z, ngeCinlel) /2(5)Vn('2'3<'|'>.11)4§762+|o lomyeCints1) 724181 (= B)
1 1 N
— (= 1\%m —z(Ixl +1) —z{ixl+1)-6 —(xl+1+6+7) [ ]+14847
=D Z&[ﬂﬁ%(luﬂ) g+ A+ 1)+ 180 wrtial | Vreeinion ()
—z(Ixl+1)  —3(IAl+1)=5 -(|x1+1+5+r)] (L 4. 1
ny+ 5001 +1) nmp+3(Inl +1)+ | 5| n+ (8] : -4-1)
With Eq. (OL 2. 10), the above equation becomes,
VAN 2y myentsty 2BV Vgt (B0 oty mps 101y 20101 (= B)
= 3 Vil (g 3 1)+ 3(6+151) . 2 =1)+3(161-8)  IAl+8+T
o meloleme NN Lokt )+ 36+ 181) B —md+ Il +3(5-1561) (IAl+0)
W[ He-1)+ 36+ 161 tn-1)+2(16] - 8) M +0+7 (IIL 4. 2)
Ty —n + IAD)FEE+18]) 50y -ng+ IX1)+3(6~161) (Al +08) | c
Similarly,
Ve M P21 g o1y /20161 B) Vi XSRS 12, myv ety 72 (= B)
= 3 yisstasr o z(n’ - 1)+%(151| - 6) 3(n’ - 1)+ (16| +0) X +8+7
=0 melole Sl S ng — m{ + M)+ (56— 16]) 20 -m+ IX)+5(6+16]) (Inl+8)
X[ fn-1)+3(161 - 5) f-1)+3(161+8) Al +6+7 (L 4.9)
T —n + X+ 36— 181) 20 —ny+ IXI+3@+1681) (1Al +8) |’ -4

with
osrsMin{”" IA =1+ 5] -5}

n—{xl-1+18{-08
If we square the above and sum over (ny,n,) and (r{,73) then, because of the orthogonality relation Eq. (IIL 2. 8) we
get [from Eq. (II. 4.2)], i.e.,
CIal+ *
"pz';'Z "'1% | VANSRS 2y ngrcnieny 2BV Vit B B 2 101, mys a1y 120101 (= B2
= L VAR O VA e 8), (IIL 4. 4)

and a similar expression from Eq. (III. 4. 3).

1V. THE O(4)-REPRESENTATION FUNCTION

1. Definition and general expressions

The O(4)-representation functions were first studied by Dolginov and Biedenharn® and later by many authors. 2t

The well-known fact that the group O(4) is locally isomorphic to O(3)® O(3) enables one to define the representation
function in the simple form

Dpie)= D0 S TN R 3 expl-iatm - ml, (V. 1.1)

+ 7 mLmy my m||my my m
where j and j’ correspond to the angular momenta belonging to the two rotation groups and j, =j; +j,, j.=j; —Js.
When j, (and j_) is an integer and j_=0, one gets self-conjugate (spin-0) representations and when j, (and j_) is half-
integer and j_=x 3, one gets two-valued (spin-%) conjugate representations. Following Strém’s elegant method of
differential operators in the group parameters, one obtains the following four ladder operators:

K,(G)DIp %N a) =k (G DY sl (o), Iv.1.2)
[K_.(j") =K. (=§' = )ID¥p 3 (a) = k(= j’ - 1)DFpd 3 (a), (IV.1.3)
L,(m)DIp %3 @) =1(m)Diip’ (@), (Iv.1.4)
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[L.m)=L (- m)IDJplsH (@) =r(- m)D““.’mlx(a), (Iv.1.5)
where

N d__ 2im(j,+1)j, | TPy . it (it 1Y i 2
K*(]')*<du2_2.7100ta%_ (]I+1) COta+m[] (] +1) ](]+1)]+[]§(]¢+2) 2.7 (] 1) .7-+m] s

g 2= G 1) =G D)+ 5.0, +2) +2 - m2]),

L.,(m) =(§%§ +2(m+1) cotozgc—v +2mcotia +2i(j, + 1)j.cota +

k(j") == 2icota[1/(j' + DI’ +1)/ @’ + )] /*[(’ +m + 1)’ = m+ 1)’ +5_+ 1)’ =5+ 1), +5' +2)(j, -]
Am)=— 2 cota(l/sina)[(j - m)(j +m +1)(j’ — m)(j' + m+ 1)1/,
If we redefine the ladder operators as,
K3 =« (KGN Lilm) =1t (m)L,(m),
KI(§") =k (=5~ DK_(j'); Lilm)=x"(-m)L_(m),
then, the function DJ5%3 (o) will satisfy the following two fourth-order differential equations,
(KLG' + DKL) - 1Dpl @) =0, [Li(m+1)Li(m) - 1]DIp!N(a)=0. (Iv.1.6)
The solutions of these equations will give the general expression for D{{p/}(a).

From Eqgs. (IV.1,2)—(IV,1.5), we get,

. d m(j, +1)j. ) "
[ i ]_(]_'_+—1)—_] DYpii(a)=a(j")D gl (@) +a(~j' - DD pi (o), (Iv.1.7)
[sma ;;i +cosa+ = (.14 Slna] DYii (@) =b(m)D} i) (@) + b(= m)DY pl (), (IV.1.8)

where
a() ={[G* 1} + D@ + )]G +m+ 1) = m + 1)+ + )G =G+ DG+ +2) G-,
bim)== (1/2m)[(j - m)(G +m+1)(§' = m)(§' + m + 1)} /2,

When j’=m, Eq. (IV.1,7) becomes

7 d &L—L‘;)]_. €19 _ [f40 3]
[ e T T mi1) | Pamen (@)=alm)Dyinic, (a). (IV.1.9)
Furthermore, from Egs. (IV.1.3), (IV.1.7), and (IV. 1. 8), and taking m —~m + 1 and then j' =m, we obtain
Uad) (o) 0 (G +m+1)(j = m)(@m +2)(2m +3) )‘ Ui
Diistma(@) == 9500 ((m ST DM+ 0G,—mG,rmr2)) Danw(@): (IV.1.10)

The Eq. (IV.1, 6) is in general very hard to solve. But for the case j'=m, the fourth order equation becomes a
second order differential equation,

2
(;2+2(m+1)cotag—+21(],+1)] cotoz-*-sll;l [mm+1)-iG+1)]}+[5.G.+2)+52 - m(m+2)]>D§f’4n'fm3(a).—_—0_

To solve this equation we substitute ¢ =exp(- 2ia) and

DU«J ]((X) t’(l— t)ij.m.j }(t)

Sy mym

After some trivial steps we obtain,
(ta -1 dt2+[y A+ o+ - o )B,‘,f«’J(t)— (IvV.1.11)

where,

Y'=2p-m, p={p,p}, o={oj,0}, o’=p+o+iim+j, +j.+2),
B=p+o+zlm-j,—j), py=20m+j,~j.+2), py=%1m-j,+j.),
Oy=j=m, Oy=-j-m-1,
Eq. (IV.1.11) is the well-known hypergeometric equation and its solution bounded for t=1 is
DYni-la)=t"(1 - t)° , Fy [f:: f,'is,_ i 1- t] .
According to the values of p and ¢, there are four such solutions:
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) thse WL 12 _ pytem o [Fa+T +2, —j-+j+1;]
(pl’ 1) i1 (1 ) 2F1 2j+2; (l-t) s

To) > 1ty = tHsda2) /21 _ p=dem-1 E [j* -j+1, —j. ‘j;]
(py, 09) ~2ty5 1-1 2Py g ,

O1) > thos = tm=detd V120 _ p\iem —j.ti, jotitL
(sz 1) Ugy (1 t) 2F1 2j+2; (1-1) ’

00) = 1oy = £ m=de33 D /2(1 _ pyedemet_p | =Fe=F =1, G- ];
(P2, 02) ~ 1z, -9 2Fy -2: (1-1) .

Among these four only two solutions are linearly independent, since Euler’s identity,”

2F1[a’ b;] =(1- z)c-a-szi [C" a, ¢~ b;],

c; 2z c; 2

implies that u,; =4y and uyp =u,,. Therefore the general solution may be written as

Hadad( ) — A plmedani 820 /21 _ pydem o |Fo T+ 2, =jo+j+1; (mef =i 42) /2 femal Jo=J+1l, =j_~j;
Djlwi i a) =Ayt 1-9 2F1[2j+2; 1~ 1+ Ayttm (1= t)m=1,F, o (1—’t) }

But if all the parameters of the above hypergeometric polynomials are integers [this is certainly the case for 04)]
then one can use the identity’

T'(a)I'(b) rl% b;] T@-c+)I'(b-c+1) F a-c+1, b-c+1;
T(c) Hesz |~ T{2-c) 2 1[2—7.; z ]’

to obtain

i ot : 2, —j i+l
D,';",;I(a)zN,j(],,,]_)t(’" TR 2)/2(1_t)] szl[f J y —1-77 1]°

2j+2; (L-19 (Iv.1.12)

In order to evaluate the overall normalization NJ( 7.+ Jj.) we, for convenience, first transform the above equation
using Euler’s identity and then use the relation’ (@ is negative integer)

a, b;] T(-b-a)l(c) a, b; ,
2Fil:c; z}— T(c- M {c-a) 2Fy b-ct+a+1; l—z]’ (IV.1.12)

and get

I‘(2.7+2)F(]#"]-+1) F _j++j9j+j-+1;

TG -j + DG+ +2) T =, +j; ¢ .

Then we use the fact that at =1 (@ =0) the O(4)-function, by definition, satisfies the condition D};’;;‘",;;](O) =8
With this condition and the Gauss’s identity’

% B _Ie)l(c-a-b)
: 1[c 1]*r(c-a)r(c—b)’

we compute N%(j,,5.). Then we repeatedly use Eq. (IV.1.10) to get the general normalization NJ(j,,7_). With this
normalization finally Eq, (IV.1.12) becomes,

Diig i) = Ni(j,,j Jtmis32 121 - t)"”'{

i dl] — (9\Fm il 4s g : j~m j++j+2, —j-+j+1;
Dj,m,m (a)_(2z) exp[ 7’(.7 +]+ ]_+2)a](s1na) 2F1[2j\+ 2; (1 - exp(—- 2“1))
(TG~ + DTG+ * DO, = m+ DG+ + QT + m + DI Em +2)2j +1) \*/2 (IV.1.13)
\Con =7 F DL +j.+ DTG, —j + DTG, + m+ DTG - m+ DT @G + TG +2)) 1

or

v T(,~m+DTG+m+DCRCm+ 2T A +)I A ~5 )0, 1)\ ommyer  vom
D’['j""”ii(a):( Fon=j. + DI (m+j.+ DTG, +m +2)T (G- m +1) ) i) (stna)"Dygi N e). AV.1.1)

The above formulas may also be derived directly from the definition of O(4)-functions {Eq. (IV.1.1)]. In this case,
for the CG-coefficients, one uses conveniently Racah’s expression [Eq. (IL 1. 8)] since the 3F, of this expression
becomes a bilateral series for j’ = and can be summed using’

P [a, b; ]~ el @I'l-a)l(1-b6)'(c+d-a-b-1)
at'y

c, d; 117 T{c~a)l({d-a)l{c-b)({d—b)

Then one has to manipulate?® carefully the many gamma functions (including the ones from the other CG-coeffi-
cient), recast the summation into a hypergeometric function ,F;, and use the Euler’s identity and Eg, (IV.1.12') to
arrive at the desired result. The simplicity of the method we have used (due to Strém) enables one to obtain easily
the above results [Eqs. (IV,1.2)—(IV.1.14)] which are not immediately seen from Eq. (IV.1,1) Furthermore, in
order to obtain a general expression for D,[:';;.’,;](a) one may try to solve the fourth-order differential equation given
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by Eq. (IV.1.6) or iterate Eq. (IV.1.13) using the recursion relation given by Eq. (IV.1.7). In either case it is
necessary to introduce new higher order polynomials which, in principle, should be reduced to the product of two
3F; hypergeometric functions. The later can be easily obtained by substituting, say, Eq. (I.1.4) in Eq. (IV.1.1).

4 7 g+ my)l .
DYsiNa)= A'Zi) (1= Ozni)rln(f;éiiz?#éz _]fn:)r!nl) exp(— i(my ~ my)a)

X 4 F, [_—J'—m, —j+i1-Ja j1—m1+1;] JF, []—j'—m, =j"+i1—J2 ji_m1+1;]’
1

. Jv . L0 IV.1.15
~ja=m+1, —j—jy-my; 1 —JammF1l, —jl=jp—my;1 ( )

where 2j, =j,+j_, 2jy=j,—j., my+my=m, and

= (jy = jp = m)] ((?' s =g G iy =fo) L =g +iy i) =g+ i) (G = m) (G - m)1(2f +1)(2j' +1) )“2
177z (G =71+ (G =iy i)V G iy +ia + DG G+ + DG +m) (57 +m)] )
However, for j_=0 Vilenkin®’ (beware of his notations) has given an integral form for Dﬁ{;*,_”,,{(a),

Next we quote two expansion formulas of Strom. %’ Using them and Eqs. (IV.1.2)—(IV. 1. 5) one can derive many
other recursion relations, i.e.,

(. +j.+ 1), =j.+1)(2 cosa)Dip =} a)

=a’(j D5k () + @' (j,~ D54 @) + b GODI 1 (@) + b7 (.- DY ),

(G, +i.+ 1), -+ 1)(- 2i sina)DT i} a) (Iv.1.16)
=j[a’GID " (@) - @’ (j. = VD3 N )] + (., + DB (D 3/ @) - b7 (.~ 1D 5P ()],

Jyitym
(o +i.+ 1), —j. +1)(2i sina)D 35 ()
=¢'(,, "W @) - ¢’ (= .- 2, DY N @) - d' (G, 3 )DGple i e) - &' (=, i )Dii i @),
(. +i.+ 1), - j.+ 1)(- 26 sina)DF 32 3()
=—¢'(j., -j' - DDF i) + ¢’ (=j. - 2,—j' - 1)DY 3 3x) (@)
-d'(j, - - DDk Na) - d' (- j., 5" - VDY i),

(Iv.1.16")

where

@ (3)=[G.+i+2)(G,=j + )G, +5 +2)(, -+ DIV 0 G=[G +i + DG ~)G +i.+ DG =512,
1/2

’

&Gt =GR B TG Dy U+ D0+ DL+ D+ 4G 45+ DG =3, +1)

@'+1)

1/2
d'(j-,j')z((zj,+3)(j,_ G Ty U- T DU =50+ 2)(, =G i+ DG +2))

Using the first of Eq, (IV.1.16) and Egs. (IV.1,16’), we can derive the following two very useful recursion
relations:

[Go=G.+i + D 2DY 0% w)

Ti AN it 4 1AL s .(j'+m+1L(j'—m+1)<J;-j')<]x-]"+1))“2
={(.=3"0.+j'+1)] cosaD},’y,‘m"’(a)ﬂ( 7T 1)@’ +3)

xsinaDj/7 (@) +i((j" m) (G’ +m)(j, +37) (G, +5' +1)

172
sinaD} 74 0)(a),

A @+ D@ - 1)
[0, 5 +2)(. =5 + DI2D 0N e) =[G, +5* + 2)(4, -5 + )]/ cosaDf 4 (a) (Iv.1.167)
G’ =-m+ 1§ +m+1)(j, +i +3)(j, i’ +2 ,
( )(1(2] +1)(2)J(g+31) ). +j"+2) SIHGDU;,f.GJ(a)

1 ’ 1/2
((J_ m)(](z‘;ﬂi)gf)zz]L_“‘l))(L] +2)) sinaD{3 ().

The first relation has been derived by Vilenkin?' using a recurrence relation of the Gegenbauer polynomial,

Finally we derive an important and new recursion relation for the CG-coefficients, by substituting Eq. (IV.1.1)
into Eq. (IV.1,7) and simplifying

E%-%H%][j‘ 7 j] [G+m+1)( - mﬂ“l)]”zv(ﬁl)[]1 )2 jH]

m; my; m my my;  m
+ 2| J1 J2 T-1]_
+HG+mG -m @B 72 o1 <, (Iv.1.17)
where,
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v (G =30[G, + 12 - 72| 1/
7"’—'( @+ 1@ -1) ) :

When j_=0 (j;=j,), we obtain,

—mWETI (7t T j)+ it d1 T+l (1 J1 F-1\_
N AR R 0 O Ry P XU CONECHE A =1 (V. 1. 18)
where
o' (=[G +m+1)(G - m+1)(2j; +j +2)(2; - )]'/%
2. Special cases

When j.=0 (4,,7, m are all integers), we use the quadratic transformation,’

a, b;| /2 a, 2b—a;
2F1[2b; z]—(l-z) o Fy b+1: -é’(l—z)'“z[l— a-z) /e (Iv.2.1)
the definition of the Gegenbauer (ultra spherical) poly nomial'” in terms of the hypergeometric polynomial,

v Tn+2v) n, n+2v;
Ci(z)= r(n+1)r(zy) 2F1[y+ i 2(1 z) ] (Iv. 2. 2)

and the Legendre’s duplication formula
FE)r@r+2)=2""Tx+3)Cr+1),
in Eq. (IV.1.13) to obtain,

Lm+ 3G, ~m+ 1T, ~j + )T +m+1) )“2 yom
TG, +m+ TG, +j + 9T (- m+ T +1))  (6ine)™"Cil(cosa).
(Iv.2.3)
This expression exactly agrees with the one derived by Vilenkin?? by a different method. Furthermore, from Eq.
(IV.1.9) we get

2m+3 Vig
J.m+1.m(a)" ((]*4_(7”"12)&)'_7”)) da jtj;x',o’i(a), (N.2.4)

Djlaia(a) =iV FIr(j +1) (

where the identity

‘;i C¥(cosa) =~ 2vsinaC¥l(cosa)

has been used.

Whenj_=+3 and — (j., j, m are all semi-integers), we adopt the same procedure as in the previous case ex-
cept that before we apply the quadratic transformation we use the following iwo recurrence relations’:

2(1+b—-c)yFy- (c-1)(1-2)yFifc - 1]+ (c - 1), Fy[a-1; c-1]=0,

z(b—l)zFi_ (C—l)zFi[b_ 1; C—1]+(C—1)2Fl[a— l,b‘l; C—l]:O.
The final results are

Dl st @) =i""1a(j,,j, m)(sina)*™! [(j,+j+1)exp(a/2)C} ' {*(cosa) - (j,—j +1) exp(- ia/2)Ci:/} (cosa)],

DY 1/0(q) = i#-ma(j, j, m)(sina) ™t [(F, =5 +1) expia/2)Cit 4 (cosa) ~ (j, +j +1) exp(-ia/2)C{/ (cosa)].

Jymym
(Iv. 2. 5)
where,
o , Cm+ 1)L, ~m+ DI, =i+ +m+1) )“2
—oi=1/2 L
ot =270+ (T T T G e DG e )
One can easily see that
(IV. 2. 6)

D*”*“”(a):(—1)1""DU+"1/“(a), D*U“““(a) DUui/Z]( Ol),,

Femym Jymym Jsmym

Furthermore, from Eq. (IV.1.9) we obtain

" 2(m + 1) “2[ cd 1 G+ D T nte
D’U'"*f'/"‘m(“):[(m+§)<j,+m+z)(j.—m)] et G D PR, tv.2.7)

Finally we give some special values of this function which frequently occur in the calculations. 2
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Jemod 5 X r@m+3 Ve i
DI (o) =4 2’\'2J+11"(J+1)[P(%)r(2j +(2)7;(m3-1)(j+m+1)] (sina)™™,

DM (a)=1, DZ(a)=ivEsin@a), DH(a)=VZcosa, Dify'}(a)=cosa,

. 1 T(m+1) 1z ) o \fem
D,L"',,L/,,?](Cx)zij'mzj'uz(z] +1)T(j +2) [F(%)P(mﬁ-%)F(Zj ¥2)(G+m+1) exp(— 10/2)(811101) , (Iv.2.8)

Dy @) =exp(~ia/2), DFANYEH a(a) = (V2/3)[exp(Za) - exp(+ia/2)],
DAY 5 (0) = §lexp(~ida) + Fexp(+ia/2)].

In the above we have generously used the following values of Gegenhauer polynomials, i.e.,
Ci(zy=1, CYz)=2vz, Ciz)=2v(v+1)[z2-1/@2v+2)].

Also, using Cl(cosa)=sin[(n + 1)a]/sina we obtain

(54401 _ 1 sin[(j,,+1)oz]
Dy o (@)= (.+1) sina ’
U 1/2) _exp(-in/2)[ 1 . sin[(j,+2)e] _ 1 . sin[(j, + 3)o ]
R RTACIE sina G.+ D exp(za/2) sina G.+9) exp( Za/z)—sina . (Iv.2,9)
Next we make use of the asymptotic formula of Gegenbauer polynomials, 18
1 .
Ccosa)— 21 (sina)™ cos[(n + M) a — 2ar],
e T(x)
and the Barnes expansion formula, !
[T+ 8T +B) Tz + 2T (z + ay) z-:wz“r“z-ﬂrﬂz,
to obtain the following asymptotic relations of O(4) functions:
- Pm+3HPTG+m+1) V2 cos[(j.+1)a=3(j +1)r]
[44003( ) —mo 39"m BT T 2 _ iyemat + 2
Dhﬂl.m(a)j’_wz 2]+1[F(%)r(]_m+1)r(m+1) (]+ ]) (Sil’la)m*i
™ cos[(j, +1)a - 3( +1)r]
o gm (sina)™* ’
. 1/2 . s L Lesa )
Uau1/23( o o cjemet | LM+ DTG +m +1) ] +i+1l 3 cos[(j, + H)a =3 + 3)n)
D) P e TG T |G ewtie/2) S
i—j—1) oy C08[(, + F)a = 5(j + $)r]
- — 2
71—(1—’75'1)7577 exp(-ia/2) (sina)™7*
it exple il + Ve~ 3G + S} (Iv. 2.10)
'j—:nTﬂ! (Sina)m-rilz .
Furthermore, we also have the asymptotic expression??
C}(cosa) — (1/Vax) sin[(n — v)r] [4 cos®sa]" +1/D),
Therefore,
DU"" 01(&) ij-m+2 eEEE[%Q» _FZ] sfemel[2;=mal/2 (] +].)-(j*+j+3/2) [FLm + %)r(]+ —j + 1)] 1z (Sina)j-m Sin[(j* —j)ﬂ]
hmm\ &) T 27@2mi7 7 Js + TE)T(m+1) (costa)¥ ’
Les ;i 1/2(' J=m=1
Dlin1/21 et €XP(5Ua =7 D] . jumet /2:emets2 (s piyUagsyn [ Dm+ LG, —j +1) sina)
Jomym (a)jﬂj-.wl 2](2")1/4 7 Js (.7+ ]) F(_g_)r(m_i_%) (COS%C;)zT
x{(j, +j - 1) exp@a/2) sin[(j, - j)r] - (j.~j +1) exp(- ia/2) sin[(j,~j + nl}. (IV.2.11)
Also, it is quite clear from Eq. (IV.1.1) that lim,.. D{’$’:)(a)=0. Finally, we give two relations which are
obvious from Eq. (IV.1.1):
i+
? DI Dl - @) =6, L Dy a)DEpl ) =Dif ki ey + ). Iv.2.12)
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3. An application

As pointed out earlier in the evaluation of transition amplitudes using O(4, 2) states!®? one usually faces the
following two matrix elements corresponding to the boost n and tilts (¢’, 9):

nn'llmm n'l'm I G |nlm), (Iv.3.1)
Gt = (n'i"k | G |nj*), (IV.3.2)

where G =exp(i6'L,s) exp(inLs;) exp(—26Ly5); Lys, Lis, Ly are generators of an O(2, 1) subgroup of O(4, 2). In order
to evaluate these matrix elements one conveniently uses parabolic basis {nm,m) as given in Eq. (IL 6. 2) and Eq.
(0. 4. 5). Since in this basis the operator L, is diagonal, one parametrizes G in terms of Euler angles a, B,y as

G =exp(—iaL,y) exp(- iBL,s) exp(— iyLgy) where,
sina sinhB=coshfsinhn, cosa sinhp=sinhfcoshd’ - coshé sinhé’ coshn,
siny sinhf = — cosh®’ sinhn, cosysinhf=sinhécoshé’ coshn— coshé sinhd, (IV.3.3)
coshpB=cosh#’ coshé coshn — sinh6’ sinhé,

If we represent the basis states given in Eq. (II. 6. 2) as | ¢ ¢o030,), then we obtain from previous works!%?5

(91050505 G| 6102030,) =exp(~a5($]+ 05+ V] VLB Egro gy 2(8) exp(— ivE(ds + ¢35+ 1)]
xexp[iaz(¢]{+¢;+1)] (051»1-4#;/1%'/(2%”4*1) so(= By exp[iyz(dy+ ¢+ 1)) (IV.3.4)

The above matrix element vanishes unless |¢j - ¢5l =1¢y— @3l and {p{— @l = [P~ ¢4l. Using this matrix element
and Eq. (L. 6. 2) we get

crm_ > [ 20'-1) ' - 1) z][ 3(n—1) n-1) 1
mm T e L20s—nf+m) zf-np+m) mllzt—n+m) st -nmtm) m

) . ¢
x exp[- ian] — nf)] exp[~ iy (g = ) IV 7o 2, n vty 12 () VTS 12, mstimi sy 72(= B)-

By making use of Eq. (IV.4.2) (with (6=0) and the definition of the O(4)-representation function [Eq. (IV.1.1)]
we get

+1+ . - —1
Gr’l?mm Z;Dl’ Iml+1’, Iml(" Ol) Iml 1 T(B)Dl. Iml+1', Iml( 7)’ (UES S Mln{z;_lln:nl' - l}u (IV—3- 5)

If we square this matrix element and sum over  and !’, then by Eq. (IV. 3. 12) we obtain,
E l nlm Z; Vlml+1+'r Iml+1w(B) (IV. 3. 6)

L
which is the same as Eq. (II.4.4). Similarly, using Eq. (IL 6. 5) and Eq. (IV. 3. 4) we get

gl 5 s —1)+3 3’ - 1) 7’ n-1)+32 zn-1) j
R Qe | Lsh-nf v R)+ 5 30 -njtk) kotE By -nytR) TS - mtk) kot

xexpl{-ia{n] + (k.| + DI VAR 2 nyscinroty 208) expl= dnfng + 5([ k.| + DI} explian + 2(k.| + 1) + |51}

XV Kl Prats, myscin_toty s20101 (= B expliv(my + 3([k.| + 1) + 61}

ﬂ:/:F(—l)'{'m[ %(n'_1)+% %n'_l) j, ][ %(n_1)+% %(n_l) .7 1]

T -ni+k)+3 snj-ni+k) R+zfi0y-m+tk)+3s stp-ngtk) k+z
xexp{-ia[n]+ 3(|k.| + 1)+ [5]]} ”(km'*lt)ll)/zno1.n1+(|n_1+1)/2+|a|(3) exp{— iy[ny + 3(|k| +1)+ 5[]}
xexplialng+ 3(|k.| +1) }Vrglf(lltzdl)-&{%/zvnzdlk 72— B) expliy(ny + 5(| .| +1)]}}, (Iv.3.7)

where we take (&) if the right state has positive parity and (¥) if negative parity. Again, using Egs. (I11. 4. 2)—
(IIL 4. 3) (with 5 =% 3), the definition of the O(4) function, and the Regge symmetries,

L I l)__ 1+z+1<l2 o 1 (l1 Iy l)____111+12~1<ll 2 l)
(mi myg —-m = (=17 my my —mj’ and —-—my —Mmy M =1 my my —mj’

we obtain

Gh= zE (DEEI3D (= Q) VLT (BID ]2 %% esivs (= ¥)+/% complex conjugate),
n-lk]-1+1581-5
< 7<Mi . .3.8
0<T<Mm{n’—lk_|-—1+l6|—5} (v )

Equations (IV. 3. 5) and (IV. 3. 8) play major roles in the evaluation of transition form factors and structure
functions. 2
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Massive and massless supersymmetry: Multiplet structure
and unitary irreducible representations

P. D. Jarvis

Blackett Laboratory of Physics, Imperial College, London SW7 2BZ, England
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UIR’s of the supersymmetry algebra for the massive and massless cases are analyzed covariantly (without
the use of induced representations) in terms of their component spins. For the massive case normalized
basis vectors |p?>0, jo; o; pjA) are constructed, where j, is the “superspin™ and o is an additional
quantum number serving to distinguish the different |pjA), the constituent p?> 0, spin-j UIR’s of the
Poincaré group. For the massless case, normalized basis vectors |p? =0, Ag; pA) are similarly constructed,
where A, is the “superhelicity.” Matrix elements of the supersymmetry generators, in these bases, are
explicitly given. The “o basis™ is used to define weight diagrams for the massive UIR’s of supersymmetry,
and their properties are briefly described. Eigenfunctions w,(6) are also defined, and their connection with
the reduction of higher spin massive superfields ®’(x,0) is discussed. Finally, it is shown how gauge
dependence necessarily arises with certain massless superfields. The massless scalar superfield, both gauge-

dependent and gauge-independent, is discussed as an example.

1. INTRODUCTION

The concept of a fermion—boson mixing symmetry
was first formulated globally in four-dimensional
space—time by Wess and Zumino. ! The particular
“supersymmetry,” with which we are concerned in this
article, was studied in detail by Salam and Strathdee,?
and some of its UIR’s were constructed. The genera-
tors, the ordinary Poincaré group generators P,, J,,,
together with a 4-spinor charge S,, form a “generalized
Lie algebra,”® with the following commutation and anti-
commutation relations, in addition to the usual Lie alge-
bra of the P, and J,

{Sa’ Ss}: - (7u c)aBPu’
[Sw Jy v] = é'(o'u v)aB Sg,
[Se, P, 1=0,

(We follow the notation of Ref. 4. Further notations

and identities are collected in Appendix A.) A represen-
tation in which the P,, J,, are Hermitian, and the S,
satisfies the reality condition of a Majorana spinor:

5, =C,,5*

(1.1)

(1.2)
will be called a unitary representation.

Supersymmetric Lagrangian models have recently
received considerable attention, in view of their renor-
malization properties.’ Such models are very conve-
niently described using the “superfield” techniques of
Salam and Strathdee.? A superfield ®,(x, 6) is defined
on an eight-dimensional space labelled by (x,, 6,),
where x, is ordinary space—time, 6, is a Majorana
4-gpinor, with anticommuting components, and a is
a spin index. Such a field transforms under super-
symmetry as

(S, ®.(x, O ]=1 {a_ae + iy, 0% 16 } ®,(x, 6).

o

(1.3)

Thus on superfields the generators S, are given a dif-
ferential representation in terms of the anticommuting
spinor @,.

Supersymmetry having been introduced, it is natural
to seek its possible implications outside of a strictly
field-theoretical context. For example, is some type

916 Journal of Mathematical Physics, Vol. 17, No. 6, June 1976

of supersymmetry scheme, albeit badly broken, of
any relevance at all for particle classification?2™$ If
80, how are scattering amplitudes constrained? What
is their Regge behavior? What is the nature of super-
symmetric bound states?’

The differential representations of the supersym-
metry algebra, while appropriate for field theory, are
inappropriate in these other contexts. The aim of this
article is to investigate the UIR’s of the supersymmetry
algebra (1.1), and to construct corresponding normal-
ized bases and matrix elements, which will be natural-
1y suited to such other applications.

In Sec. 2, we analyze the supersymmetry algebra
in the timelike (massive) case in terms of its spin con-
tent, and find a normalized basis for the UIR’s of the
form [p?> 0, jp; 05 pjA), where jg is the “superspin, ”
jo=0,%,1,3,..., each Ipjr) specifies a UIR of the
Poincaré group with mass p? > 0 and spin j=j;, jot 3,
and 0 =0, +3 is an additional quantum number serving
to distinguish the different spins occurring. The
basis vectors are constructed with the help of a set of
o-shifting tensor operators R%, k=z=3, equivalent to
the S,. The matrix elements of the R} in the “o-basis”
are also given. The o-basis is used to define weight
diagrams for the (p?> 0, j,) UIR’s, and their properties
are briefly described. Finally, it is shown how, in
the superfield representation, o-eigenfunctions w,(6)
may be defined, which can be used in the reduction of
higher-spin superfields.

In Sec. 3, we analyze the supersymmetry algebra
in the lightlike case, restricting ourselves to those
UIR’s containing only physical massless spin consti-
tuents, with invariant helicity. It is shown that this
constraint also necessitates a contraction of the super-
symmetry algebra, such that the UIR’s contain just
two helicities Ay, A;— 3. A normalized basis of the
form [p?=0, Ay; pA) is constructed, where X, is the
“superhelicity, ” 2,=0, +3, +1,+++ and each |pA) speci-
fies a UIR of the Poincaré group with mass p?=0 and
invariant helicity X=X, or X, ~ 3. Matrix elements of the
S, in this basis are written down. It should be empha-
sized that the techniques of Secs. 2 and 3 involves no
induced representation theory.
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Finally, we apply our results for the (p2=0, A,)
massless UIR’s of supersymmetry, to massless super-
fields. It is shown that free, massless, irreducible
superfields are of two types, gauge-independent or
gauge-dependent. The discussion is illustrated by mass-
less scalar superfields of each type.

In Appendix A the notation conventions are estab-
lished, and some supersymmetry algebra identities are
given, In Appendix B the properties of the o-shifting
tensor operators R are listed, together with their
matrix elements in the o-basis.

2. THE TIMELIKE CASE P2 >0
A. Analysis of spin content

1t follows from (1.1) that P? is a Casimir not only of
the Poincaré subalgebra P, generated by the P, and
J,,, but also of the complete supersymmetry algebra
S, generated by the P, J,,, and S,. (The supersym-
metry algebra §, “generated by P,, J,,, and S, is
not a group, but contains the subalgebra “generated by
the P, and J,,”, namely the Lie group ISL(2,T)=/, as
a subgroup. We consider the algebra merely over € and
make no appeal to Grassman algebras for our analysis
of the UIR’s.) Hence the UIR’s of § may be classified
by the eigenvalue of P!, In this section we consider the
timelike case P? >0, and sgn(Py)=+1. The invariance
of P* means that all components of a supersymmetry
multiplet have the same mass. ?*

A UIR of § provides a representation, possibly re-
ducible, of P, so that we may characterize the struc-
ture of the former by analyzing its spin content, or
the UIR’s of 2 which it contains. If the reduction is de-
generate, then we require one or more additional
quantum numbers to specify completely the spin content.

Before proceeding with this analysis, however, we
investigate the algebra of operators commuting with
the §,. The square of the Pauli-Lubansgki vector

(2.1)

is a Casimir of /, but not of §. However, if we define?

1 v 100
W, ='5€uppo P I,

Z,=-35iv,7 S, 2.2)
K,=W,-Z,,
K=K, - P,P?P K, (2.3)

then we find that X commutes with S, and P,, so that
(K')? is a Casimir of §. In fact, the tensors

Kuv:KuPu_Kqu;

2.4
My, =K,, +3€,,,, K" 2.4)
also commute with S, and P,, and, moreover,
[Mu.w Mpu] =ip* (Thm ‘Mvp + Ty Mg — Mye Mua = TMup Mva),

(2.5)

so that the M, , generate a group /’, isomorphic to the
Lorentz group, SL(2,C)=/, generated by the J,,. If
we denote by / the algebra generated by the S, and P,,
then we can describe the structure of § as follows®:
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S=LANT2LXT, (2.6)

where A\, X denote semidirect product and direct pro-
duct, respectively.

The subalgebra / /X7 provides an alternative means
of analyzing the structure of UIR’s of §. In particular,
since the Casimirs of /' also commute with §, it fol-
lows that a UIR of § contains precisely one UIR of L.
In fact®

iM,, M** = P K = (PN - 2 + 1),

%GHV”M‘WM“U: 0= (P2)2 )\V, (2° 7)
whence
r=0 and (K*)¥=P(%+1), (2. 8)

In order to analyze a UIR of § into its component
spins, we must consider the algebra of P invariants
constructed from its generators. If we define, in addi-
tion to W, and Z,, a 4-vector

U, =P,,,, P*S*W°, 2.9)

then the P-invariant subalgebra is generated by the set
{w?, 2%, 13,88, Ps,S° W, WU,z U}, (2.10)

which are, however, not all algebraically independent.
In fact, from the polynomial identities (A8} and (A9)
satisfied by these invariants in any representation, it
follows that, to any order, the independent invariants
are wt, P+Z, and 5S,, where

[P-=, wt]=0=][Ss,, W], (2.11)

(Pz,8,)=+iPP-3,

{P-z,85,]=+Pip-z, (2.12)
We can now use (A9) and the invariance of

(K =wi-2Z W+~ PP -3)?, (2.13)

to determine the allowed spin components of a P> 0
UIR of §, in terms of the eigenvalues

W= - P%(j +1),
P-Z=0P?=(0, +§) P,
T W=1P2,

If o=x%, then (A9) and (2.13) reduce to 7=0, and
W2=(K'*=P*(A\*+1), so that the 0==. sectors contain
just one allowed spin value, say j,. If 0=0, then (A9)
and (2. 13) reduce to

[r+3G+Dr-4)=0,
—jole+D=~j(j+1)-27-3.
The j = 0 solutions for 7=~ 3(j+1), 4j, are j=j,+3,
respectively.

(2.14)

To summarize, UIR’s of § for the timelike case may
be labelled (p*> 0, j,), where j,=0,1,1,+¢¢ is the
superspin. They contain UIR’s of 2 with P> 0 and pos-
sible allowed spins j =3y, j,, and jgt 3.

Explicit realization of these UIR’s, using the o-basis,
are constructed in the next section. In particular, we
show that the (p?> 0, j,) UIR’s of § contain 4(2j,+1)
helicity states, the spin content being precisely

4(2,+ 1) =22, +1) + [2(,+ D) + 1]+ [2(f0 -4 +1],
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in agreement with Refs, 2b and 10, We also verify (1. 2)
as a matrix equation, showing that the representations
are indeed unitary.

B. Matrix elements in the {p? > 0,/,; 0: pj\ ) basis

In this section we verify covariantly in the o-basis
the methods used in Refs. 2b and 10 in constructing
the (p*> 0, j,) UIR’s. No induced representation theory
is needed. The vacuum states used in the induced rep-
resentation method in constructing UIR’s of the little
algebra, correspond instead to a UIR of  with spin j,
and “lowest weight” 0=- 4. Then (2. 12) shows that the
S, and SS, are raising and lowering operators for 0, so

that the lowest weight states lo= - }) satisfy
Salo==-5=0. (2. 15)

We shall use 0-raising operators acting on such
lowest-weight states to define covariantly normalized
basis states [p?> 0, jo; 0; piN),

o’ p'f' N \'7$ pir) = Ga'qéj'jah'h<pl |P>,
where
(p’|p)=2p,27)° 6*(p’ - p)

and where the 1pj)\) states of the various o-sectors
belong to induced UIR’s of P, with p?=m?> 0, spin j,
and helicity A:

6Ny = UL B3N,

3 iy =3+ V| BN,

I3 | BNy =X | B
Having constructed the o-basis, we then give explicitly
the corresponding 4(2j, + 1)*-matrix representatives of
the supersymmetry generators. {Riihl and Yunn!® have

given [4%X (2j,+ 1)*]-matrix representatives, without,
however, introducing the o-basis. }

(2.16)

The operators S,, have a complicated effect on
helicity states, and are not the most convenient 0-shift-
ing operators. Instead, we pass to an equivalent set
Q:(p), defined!? by

G =TS =2 T (D) Qs 2.17)
where u,(p),, K=+% are a set of normalized positive-
frequency c-number spinor solutions of the Dirac equa-
tion, with mass m, and helicity k. Their properties are
given in (B1). The algebra of the @ may be derived
from that of the S,.* In particular, they satisfy

Qt Qt' =% K}%an, -x'gst:

Q% Qut=26m*0, s, (2. 18)
and

(@) =x2xQ7,, (2.19)
in a unitary representation. Their transformation
property under Lorentz transformations is

U @i(p) /(M) = @ (Ap) DYE*(R), (2.20)

where A =L3}, AL, is a little group rotation, the D'/?
(Wigner) matrix represents finite rotations for spin-%,
and the //(A) are unitary (reducible) operators repre-
senting Lorentz transformations. Using the reality
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property of the D-matrices, 1! we conclude that the
tensor operators, R:=(-1)*Q*,, applied to basis
vectors [opjr), lead to the following transformation
property under (/(A):
UMIRL p) | opiN) = RilAp) | Apin') DIH(B) Din(R),
Application of the Wigner-Eckart Theorem then gives
Rl - 5050 =3 cil oo l3si,  @.21)

where (A 13 k;j Ay = (3 k5§ A 171') are Clebsch-Gordan
coefficients, and where the c, are independent of
M =X+k.

The algebra of R, (B2), and that of the SS,, and
P2, may now be used to determine the ¢,;, and hence
the normalized basis vectors which are given in (B3).
The nonzero maftrix elements of R; are given by
;0" M+ x| RE[ 450500

=m (j A+ x|5K; AP’ [p),

(& %;p"jg N+ k| RE| 0; pjN) (2. 22)
N TR N A . ,
:*2’"(70—”(———*—2;0“) (o X[ 315 20p" ),
(2. 22)

and (2. 19) holds as a matrix identity.

The (p*> 0, j,) UIR’s of § may be extended to UIR’s
of § augmented by parity, IP, in a straightforward
manner. If we assume?

é/m Saéﬁpi = (i'}’QS)a,

then it follows that P+ Z is a pseudoscalar, and we
deduce!?

U [0 pir) = (- 1)~ - o5TPpj — N).

Note that for superfields, with nonunitary IR’s of /2,
parity doubling is generally necessary, since a spin
component (jy, j,) transforms to (7, j,) under parity.

(2.23)

(2, 24)

C. Weight diagrams

The structure of the (p? > 0, j,) UIR’s of supersym-
metry is conveniently describes by means of “weight
diagrams. ” O’Raifeartaigh!® has proposed similar dia-
grams, with an interpretation only in terms of super-
fields. We shall represent the general (p*> 0, 7)) UIR’s
by a two-dimensional plot of spin j vs 0. Diagrams for
superspins 0, j, are given in Fig. 1. Their structure is
actually the same as that of the “small diagrams” used
in Ref. 13 for the chiral scalar superfields.*

> <

+

o]

4
2
I NI 1
J ° LZ Jo-Ll Jo Jot3
FIG. 1.
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FIG. 2.

The diagrams are also useful in describing the spin
and superspin constituents of superfields. Figure 2
gives the weight diagram for the general scalar super-
field &,(x, ). The irreducible constituents, the general
chiral supermultiplets ®,(r, 8), and the vector super-
multiplet ®,(x, 8) are readily distinguished.* Finally,
Sokatchev!? has shown that a massive, symmetrical,
traceless, divergence-free superfield @ui...uJ(x, 6) or
Quyosen g ogroe(x, 6) of spin J has superspin content
J?, J+%. The corresponding weight diagram, Fig. 3,
is that for the scalar superfield, Fig. 2, plus its
mirror image.

A more intimate connection between weight diagrams
and superfields is established if we expand the latter in
the o-basis, in the differential representation (1. 3), us-
ing the definition (2.2). An arbitrary function of 6 may
be expanded in terms of a complete set of 0-eigenfunc-
tions e(6), u(8), and w(6), of lowest power 0, 1, and 2
in 6, respectively (Table I). As P+Z w} (f) < P¥, the
latter eigenfunction must occur in the form wf§ (6) X,,,
where P*X, =0. For example, for a general scalar
superfield we have simply

B (x, 0)=e,(0) A, (x) +7y(6) ¥, (x) + w_(6) F,(x)
+e_(0) A(x) +u,(0) ¥_(x) + w,(6) F_(x)

+eo(6) Ay (x) +u(6) Py (x) + wh () Ay, (%), (2.25)

from which we can label the nodes of the weight dia-
gram, Fig. 2, with the appropriate fields.

The expansion (2.25) is clearly valid for a super-
field of arbitrary spin. Evidently, the constraints
(D;),®,=0, where (D;), = (v:),"D; and D, is the “co-
variant derivative,” still project out irreducible chiral
constituents, of superspin J. The nonlinear constraint
DD<I>1 =0 now projects out a reducible, nonchiral super-
field ®,, with constituent superspins J+1, J-1. Its
reduction is effected by applying the appropriate
Clebsch—Gordan coefficients to the component fields.
For example, for spin 1, the field ¥;,, may be written

Diap= [Zpiau - %(‘yu)aB(y ° 7/)1)5] + %(Vu)aﬂ('y ° 4’1)5,

indicating a reduction into a spin-3 component (belong-
ing to the superspin-2 constituent), and a spin-% com-
ponent (belonging to superspin-0). Sokatchev! shows
that the highest superspin - (J+1) constituent is
projected out by means of the additional differential
conditions D*®;, =0, for spin 3, and (¥*D),®,,, =0,
for spin > 3, applied to the nonchiral part &,.
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e,(6) = 1F 3056 — 470620
,(0)=7(0)y, = @ + 186 Bip)y,
w,(6) =486,

0 ey6)=1+486%"
1 %,0)=6— 40008
2 wf9)=Fivins

3. THE LIGHTLIKE CASE P2 =0

A. Analysis of spin content

In this section we repeat, for the lightlike case, the
analysis carried out in Sec. 2 of timelike UIR’s of §.
Physical massless particles correspond to UIR’s of
for which P2=W?2=0. In this case the helicity A be-
comes a Casimir of P, and the generators satisfy the
constraint

W,=AP,, (3.1)
where
A=Pjley, P*I. (3.2)

Here we restrict ourselves to the analysis of those light-
like UIR’s of § for which (3. 1) holds in each spin sec-
tor. In fact, this constraint necessitates a contraction

of the supersymmetry generators S, as well, For we
have

[Sas Wil= €450, PP(077S),
=(Sa; AP, )= P§1P, o, PP(0°7S),,
and using (A4), we find that (3. 1) implies
(P)o2S;=0.
Also, since in general
[Sas W2] = (75 WD), 5, - 1PPS,,

then (3. 3) is consistent with the requirement [S,, W2]=0.

(3.3)

It follows from (3. 3) that S, may be represented as
S=iPS’, for some Majorana spinor §’. Then we have
explicitly, for the Poincaré invariants (2.10), that
5S,=0, and P-Z =0, Furthermore, we have

(3.4)

where N =45'i7;PS’ must be a Poincaré invariant. From
(A6d) it follows that N*=%, whence N has eigenvalues
v=z3. Moreover, from (3.2) and (3.4), the operator

K=A-iN-1) (3.5)

is a Casimir of §.

Z,=NP,,

“4

°
-5

a

L 1 il _ b J
J I % I T+t T
FIG. 3,
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In summary, this class of lightlike UIR’s of § may
be labelled (p2=0, Ay, where X;=0, +L, 21, c¢0ig
the superhelicity. They contain two spin sectors, carry-
ing lightlike UIR’s of 2 with invariant helicities X,
Ao - z corresponding to the eigenvalues v=-+4%, ~ 1, re-
spectively. By constructing explicit realizations of
these UIR’s in the next section, we verify in fact that the
(p=0, X)) UIR of § contains precisely one lightlike
UIR of P of each allowed helicity. We also explicitly
verify the condition (1.2) as a matrix equation.

B. Matrix elements in the [p? = 0, \,; p\) basis

In this section we follow the methods of Sec. 2B and
construct the (p2=0,1;) UIR’s of §. Once again, no in-
duced representation theory is needed, and we utilize as
cyclic states a lightlike UIR of 2 with “lowest weight”
v=- 3, and therefore with invariant helicity A =x,~ .
From (3.3) and (A7), raising and lowering operators for
N are again just the (S,),:

[N, (S)e]=%(S)).. (3.6)

We shall act with the (S,), on the lowest-weight states
to define covariantly normalized basis vectors of the
form [p*=0, Xy; pA):

(PM P =8, (pp", (3.7)

where the |p)\) states in each v sector belong to (in-
duced) lightlike UIR’s of 0, with P?=0=W?, and
P, =\W,,

We cannot here define shift operators analogous to
the the @f introduced in the massive case, since the
condition PS, =0 ensures the vanishing of combinations
like #S, in the massless case. However, the effect of
(S.), is to change the helicity by +3, and to leave p,
unchanged, so that we may immediately write down

(S+)(¥ |p A0 - %)Zuux(p) Ip >t()>7
(S-)a \p x0>:u-=cn(j)) \p )‘0 - %>’

where the spinor normalization constants u,,(p) must
also satisfy

ﬁux(p) =0, Y;ug(p) =0, (3.9)

and so may be written u,(p) =v.u(p) as the chiral pro-
jections of a spinor wavefunction solution of the Dirac
equation in the massless case.

(8.8)

The algebra of the (S,), in the massless case may be
deduced from Ref. 4 and (3.4). One finds

(804(8.),=0,
(Sﬁ)&(SQB: * (P’)/?c)aB(Ni 'é-)’

and applying (3. 8) and (3. 8) and (3. 10) to states
Ip Ay~ 3 gives

(SJa(8)slp X = B =2y (DY s(PY [P 2o — 3,

(3.10)

(S.)a(s+)s ‘P Ay— 5“):‘ (P')Qc)aalp Ay - %)

By using the completeness of the algebra of ¥ matrices,
we deduce that

u%y Y u=2p,. (3.11)

Finally, the representation will be unitary, satisfying
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(5)%=(c1)*¥(5.);, (3.12)
if
u(p) =u’(p) = cu(p), (3.13)

that is, if #(p) is a Majorana spinor. Conditions (3.9),
(3.11), and (3.13) are sufficient to determine u(p), and
hence [p Ay), up to a phase. The nonzero matrix ele-
ments in this basis are therefore

(P 2l (S)alp! Xo- D =u(pXp|p"),
(B Xo=3[(S)a [0 Xy =20 (YD |p".

The {p*=0, X¢) UIR’s of § may be extended in a
straightforward manner to UIR’s of § augmented by
parity IP. A is a pseudoscalar in the massless case,
and, with S, transforming according to (2.23), so also
is N, so that from (3.5)

(/mKUm-i :’K"'%,
and therefore we deducel?:
UIP ‘PZ =0, xo;PM =(~ 1)-“' 71’&: IPZ =0, - A+ %;Ipp: -2,

(3.16)

(3.14)

(3.15)

and hence the lightlike UIR’s of § augmented by IP have
the form of a direct sum (p? =0, A)® (p? =0, - A, + 3),
with helicity content Ay, = (A;~ 3), viz. four helicity
states. This result was stated in Ref, 4.

C. Massless superfields

We now use the results of the previous sections above
to analyze massless superfields ®,(x, 6). For conven-
tional massless fields &,(x), the triviality condition
(3.1), ensuring only physical massless particles with
an invariant helicity, is imposed either by carefully
choosing the finite-dimensional IR(j,, j,) of the Lorentz
group under which ®,(x) transforms, or if the M func-
tions give amplitudes which remain invariant under
certain “gauge transformations” of the external wave-
function. For spin 1, an example of the first kind is
F,,(x), the electromagnetic tensor, and of the second
kind is a vector field 4, (x), with invariance under the
gauge transformation,

A, (x) ~ AL {x)+ 3, A (),
where A(x) may be restricted in particular gauges, but
is in general arbifrary.

For UIR’s of supersymmetry in the lightlike case,
we established (3.3) as 2 necessary consequence of
imposing the triviality condition (3.1) on each spin com-
ponent separately. We therefore infer that the corre-
sponding free, massless, irreducible superfield
®,(x, 0) satisfies

(BS) @,(x, 6)=0.

This condition is clearly Lorentz-covariant. By apply-
ing an infinitesimal supertranslation {/(€), we have

PS'®'(x',0") = /() PS®(x, 0) {/ ()
= (PS + 2iP%) &(x, 6) + 0(e?),

s0 it is indeed supercovariant, provided that P?=0.
Moreover, (3.17) commutes with the covariant deriva-
tive constraints on superfields, introduced to project
out further the irreducible parts,*1

(3.17)
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Consider, for example, a free, massless, scalar
superfield ®(x, 8). To discover which gauge-indepen-
dent, free, massless, irreducible superfields it con-
tains, it is consistent to impose the necessary condi-
tion (3. 17). Using (1. 3), we find that (3. 17) holds if
and only if

®(x, 0) =A(x) +0P(x) + {Fid Xy 0,
2A=0=20%, ifp=0.

Applying the further constraints D,®,(x, 6) =0, we find
that =&, + &_, and the irreducible parts are

(3.18)

®,(x, 0) =A, + 0y, + 181y, ,0(i3"A,). (3.19)

We may also write down basis functions §,(9), as was
done in Sec., 2C, for massive superfields in the 0-basis.
Using the relation Z* = NP*, (1.3) and (2.2), we have

N +10iPy6) =+ 3(1+ 10iPv6),

NF, =% 16, (8.20

We conclude that a reducible, free, massless, scalar
superfield contains gauge-independent, irreducible,
chiral parts &,(p? =0, X;=0) and &_(p*=0, Ny=+ 2).
This type of reduction may obviously be generalized to
higher-spin massless superfields.

If (3.1) fails on some component of a massless super-
field, for example, if it contains a vector field A, (x),
then necessarily PS®# 0, and the superfield cannot be
reduced by the above method of imposing (3. 17).
Nevertheless, the triviality condition (3. 3) must still
be implemented, in this case through gauge invariance
of the M functions under gauge transformations
of the superfield. A more detailed exposition of these
applications of our work will be published elsewhere.
Here we consider as an example again just the general
massless scalar superfield, where now (3. 17) is not
imposed. The ensuing gauge dependence means that the
chiral parts ®, can be gauged away, and that the non-
chiral part ®; effectively contains just two components,
the vector A,,, and the spinor #;. This claim is mani-
fest in the noncovariant “remarkable gauge” cited in
Ref. 4 and elsewhere.

4. CONCLUDING REMARKS

The techniques of this article have yielded convenient
bases, with diagonal component spins, and explicit ma-
trix elements, for massive and massless UIR’s of
supersymmetry, with many possible applications, such
as to the calculation of Clebsch—Gordan coefficients for
supersymmetry, and to the supersymmetric bound state
problem. The analysis has been restricted to those
UIR’s which describe physical elementary particles,
However, for applications such as partial wave analysis,
other UIR’s, containing infinitely many spin components,
are relevent. The techniques used here may also be ap-
plied in these cases. They may also be extended to
handle the general question of algebraic generalizations
of supersymmetry, Work is currently in progress in
these directions.
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APPENDIX A: NOTATION AND ALGEBRAIC
IDENTITIES

Notation and v matrices

We use a Lorentz metric n,, =diag{+ - - =),
i,v=0,1,2,3 and define €y, =-+1. The adjoint and
conjugate matrices are denoted A ‘and C, respectively.
Adjoint and conjugate spinors are defined by

Jo= (A-i)aasz, Seo — (C-l)aBSB’ (Al)

respectively. The chiral projections (S,), are defined by

Sia = V1) aSs=3(1£375)"S, (A2)
where the y-matrix algebra is generated by

P vb=2m,,,

0 =5iv, MI=itvuy, - 1), (A3)

¥s =Yo¥172Y3e
We note the following useful identities:

€uvor 070 =20, %5,

(A4)

o
€uvpo Y =2Y5Yu 00

Supersymmetry algebra

The commutation relations (1.1) are in addition to
the usual Lie algebra of the Poincaré group:

[Pu. ) Pv] = 0:
[P;u JW]=i(nupPa - nuaPa)’
[J;w’ Jpo]:i(npc va +17upJuo = Tve Jup /) Jw)°

(A5)

The W, and £,, defined by (2.1) and (2.2), satisfy
the following commutation relations, which can be
proved using the identities given in Ref. 4:

(W, W, =i, PPW°,

(24, 2] =d6,,,, PPZ°,

(24, W,1=1,,,, P7Z°,

20,2 =4, (2% - §P) + 4P, P,;
[Se, W, =40, P*) ¥5S4,

[Ses Zu )=~ $i(PY,¥59)q.

(A6)

(A7)

Polynomial identities

The following identities satisfied by the /0 invariants
in any UIR, can be proved using the identities of
Ref. 4:

(SS,)? = 4P?SS,,

(P-ZP=%iPP.3, (A8)
T Z=4PYpP-T): -3 P,
(PZ)E - WM=0=(E - W(P-3),

(A9)

(@ WR =W - {P?) - 3PHE - W).
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APPENDIX B: THE TENSOR SHIFT OPERATORS
R: (o)

Normalized Dirac wavefunctions
(- m)ue(p) =0=up)(§ - m),
3o P udp)=x|p|ulp),
Ut () =2mB,
2 up)udp)=(f+m),
ug=(~ V)™*vu., = Cu,.

Algebra of R (p)
Ri(p) Ry (p) =%kmb, .58,
{Rip),Ri (P)}=0,

{RE@®)REL (P)}=+2km?0, .

Normalized basis vectors
|+ 45 J0) = o= 38.| = ;000
2y 0 Zm + 2y 0

. 1., . . .
|05 3N =20 — Ry |- 85 pioh = k)35 o A= k[0
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(B1)

(B2)

(B3)

Matrix elements of R ¢ (p)

(0;0'7 X+ K | RE|% 45 p5h) =m(j A+ | 315 §A)(p’ | p)
&4; 00 A+ & |RE| O; N
2j+1

1/2
=12m(j°—j) (-2;0_-4-—1,> (]0 X+Kl%l€;jk)<p'|p).

(B4)
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The theory of action-at-a-distance interaction between objects of two dimensions is studied. The theory
developed has some similarities to the corresponding theory of one-dimensjonal objects (strings). The
fundamental invariants of the theory are found. A particular interaction is studied, and it is found that the
interaction between closed membranes takes place via a pseudoscalar field.

I. INTRODUCTION

In a recent paper' the idea of Feynman and Wheeler
electrodynamics ? (FWE) was used to build an action-at-
a-distance theory of interaction between strings. ® The
strings are described by their world sheets, i, e., two-
dimensional manijfolds. The purpose of this paper is to
extend the theory to the case of direct interaction be-
tween two-dimensional strings which we more properly
called membranes. Now the membranes are described

by their world tubes, i.e., three-dimensional manifolds.

Some of the interesting facts of the theory of direct
interaction between strings are (a) for a simple case of
interaction the interaction takes place via a massless
scalar field, (b) the behavior of open and closed strings
is different. These facts can be used* to give nice in-
terpretations of both the Virasoro~Shapiro model® and
the Pomeron sector of the Veneziano model. ¢ We find
that some of the above mentioned facts also have analogs
in the theory of direct interaction between membranes,
e.g., for a simple case of interaction we find that the
interaction takes place via a massless pseudoscalar
field. The behavior of open, semiopen, and closed
membranes is in each case different.

In Secs. 2 and 3 we discuss the general theory. We
find the set of invariants on which the action must de-
pend to be Poincaré invariant. We also find a formal
analogy between the equations of motion of particles,
strings and membranes. In Sec. 4 we study an explicit
type of interaction that is the obvious generalization of
the interaction of FWE. We discuss the field theory that
can be extracted from the given interaction. We find
that the interaction takes place via a massless pseudo-
scalar field. Also we find that the field equations in a
pseudovectorial representation are a sort of dual sys-
tem of equations to Maxwell’s equations in the Lorentz
gauge. In an appendix we study some of the properties
of the free membrane equation of motion.

2. FREE MEMBRANES

The three-dimensional world tube of a membrane is
described by x%(¢, £, 1) where £, £ and 5 are invariant
parameters.

The volume element of the world tube is

dU“w=d§d£dT)O’“w, (2.1)
where
gHvP - 31 k[nkv&p] (2.2)
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and

2
9
The symbol [+« ] means antisymmetrization in the in-

dicated indices. Note that 0"’ is invariant under a cy-
clic permutation of its indices,

{2.3)

4
u -
x*, xt=

[

oot K%
2

o - 2
x* x* and x*=_——x*,
on

O.MVF= UVD# = opuv

(2.4)

The space in which the membrane world tube is em-
bedded is the Minkowski space with metric g,, and
signature — 2. Also significant is the intrinsic metric of
the membrane, y,5. Note this 3-space will in general
have a nonzero curvature.

The Greek indices run from 0 through 3, the small
Latin indices from 1 through », » being the number of
membranes, and the capital Latin indices from 0 through
2.

The action for a free membrane is given by

L=ty =l med
S(f)zuz f‘scif fe=o ﬁo (doasyd%m)uz' (2.5)
We will consider only spacelike membranes, so the
quantity between parentheses is positive. The integration
domain is such that the spatial extension of the mem-
brane is finite, evidently this action is manifestly
parametrization independent.

The equation of motion is obtained by imposing the
condition that the action (2. 5) be stationary under the
variation

x#(E, E, M)y~ x*(E, &, m) + 86 (L, £, m), (2.6)
axu(gh‘gyn):&xu(gf, g; 77)—':0- (2-7)
From the above requirement we get
a8y
65"’=p2/ d’¢ (77"—07177 6008 =0, (2.8)

where d%¢ means dZdtdn. The variation 86“* can be
nicely expressed in terms of a linear differential op-
erator as follows. Defining D*” as

. 0 rua 2 ’ 0
D*Y = ([u’v]____ [ulvl _9 [, ] _9_ .
Zxxm7 xxagﬂcxag . (2.9)
the variation d0*** is
504¥ = D“V5x° + D°* 5x* + DV°6x*. (2.10)
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The operator D*” has the following properties:

D*(af +Bg)=aD"’f +BD* g, (2.11a)
D*(fg)=fD" g+ gD"*f, (2.11p)
D) =0"" s £ (), (2. 11c)
D" g=~D"g. (2.114)
From (2.8), (2.10), (2.11), and (2.4) we find
FY _ _ 9,2 3 wy __Opy o
68V =~ 3pu f d {[ (0—.—‘:?)917-2] ox
aﬂ-W’ - n=d
+6ul | didE | =177 Xu K0 0%,
(o-0) e
ohvP o n &=l
+6u? | dtdnl ——=1rrx.x, 8%, =0. (2.12)
(0-0) I

The surface term that does not appear in (2. 12) vanishes
by (2.7); the others do not vanish automatically if éx* is
an arbitrary variation that satisfies (2. 7). Moreover,
ox* (¢, £=0,m), dx*(t, £=1,7n), etc., can still be ar-
bitrary variations depending on the nonfixed parameters.
We have several posibilities to kill the remaining sur-
face terms, which we will analyze in detail. If the sur-
face terms are zero, (2.12) implies

3H2Du3 (—_O;Q%TT =0.

o (2.13)

The surface terms vanish if one of the following sets
of conditions holds:

(0.?:;:72 5611;»:0; (EZO,Z); (2.142.)
O.MVP ° k
T oT Xwh=0, (1=0,d), (2.14b)
BxM (L, £=0,n)#06x"(L, £=1,1), (2.14¢)
bx* (g, £,n=0)#dx"(L, £, n=d), (2.14d)
O,U-VP
m xuxv::oy (gzoal) (2. 153.)
xu(gy‘g,nzo):xu(g,g’n:d)’ (2. 15b)
(g, £,n= 0)=x"(¢, §,n=d), (2.15¢)
ox*(L, £,m=0)=6x" (¢, £, n=d), (2. 15d)
(g, E=0,m)#6x" (L, E=1,m), {2. 15e)
ouup LI
(0.0)172 xu.xv=0v (TI= Osd); (2. 162.)
(L, E=0,my=x"(¢, E=1,7), (2. 16b)
"L, £=0,m) =5, £=1,7), (2. 16¢)
Gx“(g,E::O,n)zéx“(g,&:l,n), (2.16d)
6x*(¢, £,m=0)# 6x“(L, E,n=d), (2.16e)
xu(gy €=0yn)=x“(§y§=l/f7), (2.173)
(L, E, n=0)=x"(¢, £, n=d), (2. 17b)
(L, E=0,m =2, E=1,7), 2.17¢)
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248, E,n=0)=%*(L, £,1=d), (2.17d)
5"“(5’5:0,77):575"(5,5:l,Tl)» (2-179)
(L, E,n=0)=0x"(L, £, n=d). (2.176)

When the set of conditions (2.14) is fulfilled, we name
the membrane open. When (2. 15) or (2. 16) is fulfilled
we name it semiopen or semiclosed interchangeably.
When (2.17) is fulfilled we name it closed or “bag.”
Note that Chodos ef al.” have discussed a model of bags
in a completely different context. However, their in-
teraction takes place in a different form.

Condition (2. 14a) can be interpreted as follows, multi-
plying the mentioned condition by x*(¢, £=0,7) and
x(t, £=1,7n) we end up with 6-0=0in £=0,7. Then we
have that the edges defined by £=0,! travel with the
speed of light. In the same way we can interpret (2. 14b).
Then we have that in an open membrane its four edges
travel with the speed of light, whereas for a semiclosed
only two of them do., We will see that this is not the
case when we have interactions. In that case the edges
also interact and the relations (2.14a), (2.14b) are no
longer valid.

Relation (2.13) is a system of second-order nonlinear
differential equations that gives us the evolution of the
membrane world-tube x* = x*(, &, 7). This system of
equations will be discussed in the appendix.

3. COUPLED MEMBRANES

We will take a Fokker type of action® for the system
of membranes

S=28"+3 2y [d%, [,
Qg
ath

xRab(xmxb,&a’éa’%asiméb’fb)- (31)
In general this action will not be adequate to describe

all types of membrane—membrane interactions, due to
the fact that it depends only on x* and its first deriva-
tives. But a large class of interesting interactions will
be well described, e.g., the generalization of the action
that gives FWE,?

1f we demand that S be Poincaré invariant, the de-
pendence of R,, on the indicated variables can take place

only via the following set of 16 independent invariants,
Sab:(xab'xab)1 2; where Xap=Xg— Xps (3‘23)

. . 7 4 ~ -
Xab*Xay Xap*Xby Xab®Xas Xab*Xby Xab*Xas Xap*Xps

(3. 2b)
. , “ A
Ry * Xy Ko® Kyy Xoo Xy, (3. 2¢)
! . o a . 4 ~ 2
ka Xps ka'xby Xq*Xpy Xag'Xpy Xg Xpy Xg* Xp (32d)

Note that we get the corresponding set for strings
setting #,=%,=0. In this case we have only nine invari-
ants. Putting &, =x,=%,=%, =0 we recover the set of
four independent invariants for a system of two parti-
cles? a and b,

If we demand

R,,=R,,, (3.3)
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i.e., symmetric interaction, the set (3. 2) reduces to
the ten independent invariants

Saps (3.4a)
xab'%abr xab'j’cam xab"&ab» (3.4b)
oyt Xy Xgt X, Kot Xs, (3. 4c)
oyt Xy Kgy gt Ryt iy gy Ky Ry tApRg  (3.44)

Imposing the condition that the action (3.1) be
stationary under the variation (2. 6) and condition (3. 3),
we find

oR
i ot =2 f o (5

and for the edges,

2 Oguy Ly v 3 aRab — —
6 °m—)er72- x“xa+b2#3af dgb 0, (E-—O,l),

(3. 6a)
Gui——m(oc,";”’; xa+2fd3§b Pa 0, (1=0,d).
(3. 6b)

For an open membrane we have that the edges have
their own interactions and no longer travel with the
speed of light. For a semiclosed membrane we have that
only one condition, (3.6), must be satisfied, depending
which are the open edges. For a bag conditions (3. 6) do
not apply.

Multiplying Eq. (3.5) by #,, %,, and %, we find, after
some algebra, the following “conservation laws”:

2 (1_56:-_3__> __a_(;cn 9 2 {2
oL, “oxs) TR Nk ) T am \'° %

x2 | d%Rau=0, (3.7a)
@ 3\ 2 (5, 3\ 2 (1,3
[,aga (1 x"'a_ﬁ) M. (x“ 5?5) 3t, ("5 akﬂ)]
x 25 | d*tsRe =0, (3. Tb)

b#a

e (o)Al )i e
an, Ya 55r 3L, \' ¢ Xt 8k, \7? ax®

X Ef AR 4= 0. (3.7¢)
b#a
In the same way we find from (3. 6)
d
5}3 ,?—2, f &’ Ryp=0, (£=0,1), (3.8a)
2= x,, 2 | @tRu=0, (£=0,1), (3.8b)
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pog o)+ &2 — ak’ 2 fdagR »=0, (£=0,0)(3.8¢c)
5‘: a.ep [ d3§b ab—o (‘f} O d), (3. 93,)
a ax Z)f dszb ab“'o (77 0 d); (39b)

np O
u&(ga.aa)llz-}-x,ﬁ'aﬂ;:- bZ’;f d%»Raa:O, (n=0,d).
(3.9¢)

We can conclude that R,, must be chosen in such a
way that it satisfies (3.7) in order to have a consistent
set of equations of motion. If the membrane is open R
must satisfy (3.8) and (3. 9). If the membrane is semi-
closed, R,, must satisfy either (3. 8) or (3.9), depending
on which are the open edges.

Equations (3. 7)—(3. 9) can also be found by demanding
that the action (3. 1) be invariant under the reparam-
etrization

Lo~ &+ 08,, ga»
Tla ™ Ta + 8%

ga + 6£B7
(3.10)
This fact implies that if we choose R,, in such way that

it satisfies (3.'7)—(3. 9) we are free to perform the
change of parametrization

=Zalla) £ar Mo}
;l.a = 774(54, gm na)'

Ea(gm gar 7}.,)
(3.11)

We can define the internal metric of each membrane
as follows:

dmi=y,pdtAdtB=dx® dx, (L, E,n), (3.12a)
dmt=xox dg*+% ok dB + % +% dn* + 2% % dedE
+ 2% <% dtdn+ 2% -2 didn. (3.12b)

The parametrization can be fixed by imposing three con-
ditions on y,5. For example, we can choose a param-
etrization that diagonalizes vy, i.e.,

Yex=k-F=x-2=0. (3.13)
Note that ¥* is a timelike vector and ¥* and #* are
spacelike vectors, hence the signature of y,5 is - 1.

Given an arbitrary space with metric y45, it is not
always possible to solve the system of differential equa-
tions that relate y,p with x*, This is a consequence of
the well-known fact that the number of dimensions of a
flat space in which a pseudo-Riemannian space of three
dimensions can be embedded'® is six. But there exist
simple criteria that tell us when we can embed pseudo-
Riemannian spaces in flat spaces of one dimension
higher (embedding of the class one), !!

The three relations between &, %, % that fix the param-
etrization will in the general case be not sufficient to
linearize the free membrane equation of motion (see the
Appendix). In the case of strings the situation is totally
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different, because, without loss of generality, the metric
of the world sheet can always be chosen to be conformal-
ly flat. This fact is enough to linearize the free string
equation of motion, 1213

If we assume that the dependence of R, on the in-
variants (3. 4c) and (3.4d) takes place only through the
combination of o, and 0,, we can cast the equation of
motion (3. 5) in the form

? 3
3pipry —-:-g—")’-m MEQ & (3;5 - 3D$‘”W) R

(3.14)

and Eqs. (3.6) in the form

2 ca Y oy “ 3 oAy a _
Ha (Uﬂoo'a)l;g xaxu +b§; f d § Xg RG a'c'u“";'p Rdb'—O,
(£=0,1) (3.15a)
4 p 9
ﬁ%xa'hzf LLyieks 5o R =0,
(n=0,d).

{3.15b)

The conservation laws (3.7), in this case, reduce to

8 uvp Y _
o (1-0, = ,,w,) f L R=0, (3.16a)
(- 25 B [ dtRm=0 (3.16b)
at, ¢ 30, ] b a= '
R . 2 | @eRa=0. (3. 16c)
ana a ao.zvp 7 ab

And the equations for the edges (3.8) and (3. 9) reduce to
only one,

2 .
TG S S Fro g fd3r,,Ra,,::0,

(¢=0,1, n=0,d). (3.17)

The system of equations (3. 16) gives the following
constant of motion:

E€0 4 1, d>=(cf""5£—w—1) > fd%,,R,,,. (3.18)

£a

The equation of motion (3.14) has the same form that
the corresponding equation in the FWE! and in the
action-at-a-distance theory of strings.!® We can pass
from one to another by the substitutions

4 e O wee ANEY
s 2D 3D%,

Uy Tuy Tppoe

This analogy only holds for the equations of motion.
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4. APARTICULAR CASE OF INTERACTION

In this section we explicitly consider the symmetric
interaction between membranes given by

Rab=gagb°:ppcbuvo G(sﬁb)y (4.1)

where g,, £, are coupling constants with the same units
as u. G is a Green’s function describing time sym-
metric interactions.

First we will study the interaction for a general type
of membrane. Then we will study some aspects of the
field theory that can be extracted from the direct in-
teraction between closed membranes.

A. The direct interaction

Action (3. 1) with the interaction term (4. 1) fulfills all
the requirements mentioned for a consistent set of
equations of motion if the Green’s function is

G(sY = 8(sY) - 8(s?) 5";“ Jy(ms), 4.2)
i. e., the solution of the Klein—Gordon equation
O G(s?) + m*G(s?) =~ 47 & (x). (4.3)

In this case the equation of motion (3.14) can be cast in
the form

3“’1Da6 ““Q&ITZ‘ WZ} Fyoasy- (4.4)
0 ° G ) bta
For the interaction of the edges we find
—fﬁ"jﬁn xRy + g;x“a?" 7‘ Pyn (4.5a)
2 -G o Ze 4.5b
Ka __luzrn XaXa +gaxnxn buves (4. )

(0,°0,)

where the sums run only over semiopen and open mem-
branes with the same restrictions that we state for Egs.
(3.6).

The quantities F*#° and *# are defined by

Fom=3a®pe~ 08Puys T 0Psas— %6 Pyass (4. 6a)

Bom®)= g [ AL, &M Gy - x@) . 4.7

Note that $** has the same symmetry as ¢®*®. From
(4. 6a) we find that F*®"® is completely antisymmetric in
its four indices, and that it can be written as

FaBYB—EaB'/be auéva (4~ Gb)
From the explicit form of ®*# it follows that
2,9°% =2¢{ [ deatlx"4 GG+ [ aganlE"z6lit,
4.8)

where the right-hand side of the above equation is zero
only for a closed membrane.

From (4.3) and (4.7) we get

D@y + 1 Bopy == 47 45y, 4.9)
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where

Joum®)= g [ d30,5(*) 6y - x (¢} (4.10)

The field F*#° defined by (4.6) is invariant under the
gauge transformation

Doy Pusy + Vs + 35¥yq + 3y ¥ag, (4.11a)
if ¥*8 is such that
\I,orB=_ ‘I,ﬂa. (4. llb)

Equation {4.4) is the generalization of Dirac’s equations
of motion. The potential ®**" has a retarded and an ad-
vanced part. We expect to recover causality by the re-
quirement that no net radiation exists. This procedure
then yields the radiative reaction force on the membrane
due to our coupling. In FWE the above procedure gives
the reaction terms that appear in Dirac’s equation of
motion, !¢

B. The field theory of the interaction

If we assume that only closed membranes take part
in the interaction, the field equation

B FB0 @70 — _ 4Pt

is equivalent to (4.9) whenever we impose for a closed
membrane the gauge condition (4.8). Moreover, if we
impose the condition of gauge invariance to the above
field equation, we find that this requirement can only be
fulfilled if the field is massless. Then we end up with

aa-Fuszbz_ 41rJB7‘6' (4. 12)
Furthermore, the relation (4. 6) is the solution of
aeFaBrﬁ + aaFBs‘ra + aBFeaey + arFOEaB"' abFevaB:‘o' (4- 13)

At this point we can abandon the action-at-a-distance
formalism and study the field F*#® as been produced by
a given current J** due to other closed membranes.
Equations (4.12) and (4.13) that define F**® are analogs
to Maxwell’s equations. For a closed membrane the
field F*®® is the physical observable, the analog to the
electromagnetic tensor in EM. Also we know that the
solution of (4.13) is (4.6) and that (4. 6) is invariant
under the gauge transformation (4.11).

It is a well-known fact that in a four-dimensional
space—time a complete antisymmetric tensor of rank
three is univocally associated with a vector density
(pseudovector). 7 Hence we can obtain a pseudovectorial
representation of the field equations. Defining

AY =31 270, (4.14a)
we have
Doan=€sand’. (4. 14b)

From (4.14a), (4.9), and the condition m =0 we get
OA% =< 4gJ%, 4.15)

where J is defined by a relation similar to (4.14a). The

gauge condition (4.8) (for a close membrane) in terms of
A% is

3%, 5 = 3(0"A" = 3"A*)e,, gy = 0. (4.16)
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Also

3% Iy gy = 3(3%J" = 3"J*)ey 1y =0. (4.17)
The last two equations are equivalent to

*AY - pPA* =0, (4.18)

g’ = %" =0, (4.19)

The field F**° can be expressed in terms of A® as
follows:

Fobr _afbey Ab, (4.20)
The gauge transformation (4.11) now reads

A%~ A% 43,0, (4.212)
where

*

T8 18270 U, (4.21b)
From (4. 20) we find that

o FO0=0,4"%0. (4.22)

Note that 3,A* is invariant under the gauge transforma-
tion (4.21). It is interesting to notice here that Egs.
(4.15), (4.18), and (4. 22) give formally a sort of dual
theory of Maxwell electromagnetism in the Lorentz
gauge,

It is clear from (4. 18) that we have a field with only
one degree of freedom; moreover, (4.18) and (4.19) tell
us that A* derives from a pseudoscalar potential A and
J* from a pseudoscalar potential p, i.e.,

A“=8“A, J“=a“p. (4. 23)

Equation (4. 15) tells us that p and A are related by

OA=-4n(p+py), (4. 24)
where p, is an integration constant.
The field F*®® is related to A by
Fobrt ooy, (4.25a)
and to p by
FE0 — _ 47 (p + py ). (4. 25b)

From (4. 25b) we conclude that p, represents the
pseudoscalar version of the free-field solution to (4.12)
and (4.13). Thus the free-field solution is a constant
field. The free-field theory that we can extract from
interaction (4.1) for the case of closed membranes is
rather trivial (we do not have radiation as in EM).

Two derivatives are necessary to relate A with F*5%,
This situation is similar to the Hertz potential of EM.
But a physical interpretation of this field A is difficult—
perhaps it can be related to a field that should exist in-
side the closed membrane (bag).

It is surprising that for the interaction (4. 1), which is
the obvious generalization of the interaction that gives
the FWE, we end up, in the case of closed membranes,
with a pseudoscalar type of interaction.

The situation in the case of open and semiopen mem-~
branes is such that we do no longer have a conserved
current J*®, There is a loss of current at the edges.
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This situation can be fixed by adding an extra interac-
tion to the action (3.1). This extra interaction can be
construcied in such a way that gives a change in the
equation of motion only for the edges. In effect, the
procedure here is analogous to the procedure followed
for open strings. !
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APPENDIX

In this appendix we study some aspects of the free
membrane equation of motion
Bm
Dy, (0_5’77 =0. (A1)
When the parametrization

X %=0 (A2)

o f 3 -~

XoX=X°*X=

is imposed to {Al) this equation is reduced to

LRI SN S L)
AL X%  E x+x on x+ % xeXx 0¢
Lo ot
X 9 x* 0
+ Tk 7t + ;T;—SF) andet'yAB =0, (A3)

This equation can be cast in the more appealing form

1 ) 0
0x%*=s ——— —¢ (Vdety VP x“) =0.
e Vet % o (a4)

Note that Ty, 5 is the d’Alambertian operator for scalar
Junctions in the intrinsic space of the membrane. Also
note that (A4) is not a linear equation, because y .5 is
defined by (3.12). Due to the fact that (A4) is invariant
under the change of “coordinates”

=E(§,§,77), E:E(§’£9Tl)y ﬁ:ﬁ(ga‘fwn)) (A5)

we conclude that {(A4) is equivalent to (Al).

Obviously Eq. (A4) cannot be cast in a linear form
using only the change of paramentrization (A5). There-
fore, we will not have a general solution to the free
membrane equation of motion. But we can study parti-
cular solutions.

The trivial solution to (Al) is
x* =a®f +b%E+c%n+d°, (A6)

where a*, %, ¢*, and d* are constant vectors. This
solution unhappily does not fulfill the requirements to
represent the motion of a membrane because it does not
satisfy any of the sets of conditions (2. 14)—(2.17).

An interesting particular case is the one that is ob-
tained by imposing the requirement that y,5 be con-
formally flat, i.e., the condition (A2) and

Yox=A+x=XZ=f(L, £,1)>0. (AT)
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In this case Eqgs. (A3) and (A2) imply

Ea‘i (3f+ 1nf) =0,

?
gé(f+1nf)=o, (A8)

%(f—i—lnf).—.O,

i.e., fis a constant that can be chosen without loss of
generality to be equal to one. Then Eq. (A3) is reduced
to

azxa azxa 82 o

A T ra (A9)
Hence, if one finds a solution to (A9) that satisfies (A2)

in some range of its variables and condition (A7) (with
f =1) at a point belonging to that range, then the equa-
tions of motion propagates the condition (A7) (with f=1)
through the entire range of the variables where (A2)
holds.

Note that corresponding to Eq. (A9) in the string case
is the general free siring equation of motion, and that
this equation of motion propagates the condition Xex
+% «% =0 through the entire range of the variables where
% % =0 holds.

A solution to (A9) that satisfies the conditions (2.17),
(A2), and (A7) at a point can easily be found as a series
of circular functions. These latter conditions are ex-
pressed as conditions on the coefficients of the series,
in a manner analogous to the one found by Scherk in the
case of strings. !> But here it is not so clear that all the
obtained conditions are consistent. This point together
with a more sophisticated approach to Eq. (Al) using
embedding techniques will be studied in a future paper.
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Excitation of horizontally polarized waves in critical-
coupling regions where the permittivity gradient approaches

zero—Full wave solutions
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Maxwell’s equations for inhomogeneous isotropic media are transformed into coupled ordinary differential
equations for the wave amplitudes. To facilitate the solutions of these equations for dielectric layers with
critical coupling regions, a generalized WKB approach is used. To this end, sets of auxiliary functions that
are solutions to the wave equation for homogeneous or linearly varying permittivity profiles are employed.
By introducing an additional set of auxiliary, parabolic cylindrical functions, the generalized WKB
approach is extended to obtain suitable solutions for critical coupling regions of the dielectric layer where
the gradient of the permittivity profile also approaches zero. Expressions for the reflection and transmission
coefficients and the characteristic surface impedance for an inhomogeneous dielectric layer are derived as
functions of the transverse wavenumber. Realizability and reciprocity relationships are also derived.

1. INTRODUCTION

Propagation of electromagnetic waves in inhomo-
geneous media has been analyzed extensively in the
technical literature.!~® Rigorous closed form analytical
solutions for the electromagnetic fields have been de-
rived for special permittivity profiles. In the general
case, for which no closed form analytical solutions are
known, various numerical and analytical methods have
been developed. Thus, for example, for horizontally
polarized waves, the inhomogeneous dielectric layer is
subdivided into strips of finite thickness in which the
dielectric coefficient is assumed to be uniform or as-
sumed to vary linearly as a function of position.® The
solutions for the fields in each strip satisfy the boundary
conditions for the electromagnetic fields at the inter-
face between two adjacent strips. Another method em-
ploys Green’s function techniques to rigorously formu-
late the electromagnetic fields in terms of integral equa-
tions® which are solved using standard iterative tech-
niques. However approximate results obtained by a per-
turbation method do not necessarily obey all the condi-
tions (such as energy conservation) satisfied by the ex-
act solution.

Using a generalized WKB technique Maxwell’s equa-
tions are transformed into coupled ordinary differential
equations for a new set of dependent variables, the wave
amplitudes. ’ The wave amplitudes are related to the
transverse components of the electric and magnetic
fields through the transverse wave admittances which
locally depict the principal characteristics of the in-
homogeneous permittivity profile. Thus for horizontally
polarized waves in a slowly varying medium, devoid of
critical coupling regions, the wave admittances are de-
termined by regarding the medium to be locally homo-
geneous. For critical coupling regions, the permittivity
profile is regarded to be linearly varying and the cor-
responding local wave admittances are expressed in
terms of Airy integral functions. The formulation of the
solution in terms of the coupled wave amplitudes is ri-
gorous’ and a program has been written to compute the
electromagnetic fields and the reflection and transmis-
sion coefficients. The results are shown to be consis-
tent with energy conservation and reciprocity relation-
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ships up to five significant figures. However, this an-
alysis’ is not suitable in its present form when the in-
homogeneous dielectric contains critical coupling re-
gions where the gradient of the refractive index also
vanishes since the coupling coefficients become singular.

To apply this generalized WKB technique to critical
coupling regions where the gradient of the refractive
index also vanishes, in our present analysis the per-
mittivity profile is regarded to be locally parabolic and
the wave admittances are expressed in terms of para-
bolic eylindrical functions. Two different local charac-
terizations of the permittivity profile in this region are
considered and their relative merits are discussed.

Energy conservation and reciprocity relationships for
evanescent waves and uniform plane waves propagating
through an inhomogeneous dielectric slab are derived.
Expressions for the reflection and transmission coeffi-
cients and the characteristic surface impedance are also
derived as functions of the transverse wavenumber.

2. FORMULATION OF THE PROBLEM

The nonvanishing components of the horizontally
polarized electromagnetic field due to a y directed elec-
tric line source j, parallel to a horizontally stratified
dielectric slab (see Fig. 1) are

oE .
- azy == twuH,, (2.1a)
JE
it R |
S iwnH,, (2. 1)
and
oH, ©°H, .
32~ x ={weE,+J,, (2.1¢)
in which
J=d,a,=I6(x - x))6(z - z,)a,, 2.2

where 6(x - x,) and 6(z -~ z,) are Dirac delta functions,
and [ is the intensity of the current filament. An exp(iwt)
time dependence is assumed and € and u, the permitti-
vity and permeability of the medium of propagation, are
assumed to be independent of the variables x and y. The
dual problem, excitation of vertically polarized waves,
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g+ H1g,

€(2)

FIG. 1. Excitation of horizontally polarized waves by an elec-
tric line source parallel to an inhomogeneous dielectric siab.,

may be treated in a similar way by replacing the elec-
tric line source J by a magnetic line source J,,.

On eliminating H, and H, from (2.1) we obtain the
wave equation for E,, i.e.,

(az+az+ _a__l_.+k2E=L(E)" J
2 3 Pa\n) ez A ”’(2 3)

in which &= w(ue)! /2 is the wave number. We assume
that no known analytic solution for (2. 3) exists in closed
form for the particular inhomogeneous medium consi-
dered. Instead of solving the second-order differential
equation (2.3} for E, we proceed by transforming
Maxwell’s Eq. (2.1) for the transverse components E,
and H, into a suitable set of ordinary differential equa-
tions for a new pair of dependent variables, the wave
amplitudes ¢; and ¢,. To this end we express the trans-
verse components E(x, z) and H,(x, z) in terms of their
respective Fourier transforms E(g, z) and H(B, z). Thus

E/(x,2)= f_: expl- i8(x - x ) JE(B, 2) dB, (2. 4a)
in which
E@®,2)=(1/27) [ "explif(x ~ x)1E (x, 2) dx, (2. 4b)

and a similar relationship exists between H,(x, z) and

H(B, z). The completeness relationship associated with
(2.4) is

6(x = xg) =(1/2n) |~ exp[-iB(x - x,)]dB. (2.5)
Eliminating H, from (2. 1b) and (2, 1c) we get

oH, 10

3 (E +Ez—-zE) Jy. (2.6)

Multiply (2. 1a) and (2. 6) by exp[— i8{x — x}1dx/2n and
integrate with respect to x, [~ =, ], to get the ordinary
differential equations for the transforms E(B, z) and
H(B, z) of the transverse field components E(x, z) and
H,(x,z) respectively; i.e.,

%E(g, 2) =iwuH@, 2), (2. Ta)
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1
——H(B’ )—-"“k zE(Bs Z)+J(B, Z), (2- 7b)
in which J(B, z) is the Fourier transform for the elec-

tric current distribution

J(B,2)=18(z - 2)/2n (2.7¢)
and

kg =FR? - B2 = k*(1 - s?) = k%%, Imc <0, (2.8a)
and in view of Snell’s law,

B=k(z)s(z) = (2. 8b)
in which &, is the free space wavenumber. Thus

@?=n*-8=C2+nt-1, Im(C)<0, (2.8¢c)

and the refractive index is n="~/k,.

3. THE DIFFERENTIAL EQUATIONS FOR THE
WAVE AMPLITUDES

To facilitate the solution of (2.7) for the field trans-
forms E(B, z) and H(3, z), we express them in terms of
two new dependent variables, the wave amplitudes
$1(8, 2) and ¢,(8, z) defined by the following equations:

E=¢,+ ¢, (3.1a)
and

H=- (Y1¢1 - Yz‘i’z):

in which Y¥; and Y, are local transverse wave admittances
associated with the wave amplitudes ¢; and ¢, respec-
tively, i.e.,

Y1(8, 2) == (1/iwpun'g (8, 2) (3.2a)

and
Yz(B; Z) = (l/in)ln’gz(Bs Z):

in which In'g=(dg/dz)/g and the auxiliary, local wave
solutions, g and g,, are yet to be chosen.” Thus on
substituting (3. 1) into (2.7) we get

(3. 2b)

Py +dy=—iwpn(¥Yid; ~ ¥y, (3. 3a)

and
~ Y 0y + Y0, =Y - Yid,— (Viw)kig? (¢, + ¢,) +J.
(3. 3b)

In (3. 3) the primes denote differentiation with respect
to z. After some algebraic manipulations we obtain
from (3. 3),

£:L(g) aL(gy) J

8

e W) O W Y O
I__gé g2L<g1) 1L(g2 3. 4b
¢z—ga¢2+W(gz,g1)¢1 Wigo, gx)q)z 3’7’ (3. 40)

in which the second-order differential operator L is

given by
d (1\d 22]
Lig= [EEZ udz( )dz k £

The Wronskian W(g;, g,) and Y7, the total wave admit-
tance, are defined by

(3.5a)
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W(g1, &2) = 8187 = 8281 (3. 5b)
and
YT = Y, +Y,= (1/in)W(gp gz)/g1gza

Equations (3. 4) can also be expressed in matrix notation
as follows:

(3. 5¢)

' =(G+C)d +K, (3. 6a)
in which
(o3} Gy O
$ = y G=
o 0 Gy
and
Cu Gy I -1 3. 6b)
C= cal sz B K:WG(Z“ZS) 1 (e
where
G, =gi/8, t=1,2 and Gy =0, i#], (8.7a)
and for i #j,
Ciy==C;;=giL(g;)/W(g,, &), i=1or 2, j=1or2.
(3.7b)

The coupling coefficients C,;; can be made to vanish only
if solutions to (2. 3) are known in which case ¢;=g;
(i=1,2). However, this is not the case of interest in
our present investigations. Hence, a judicious choice
for the local auxiliary wavefunctions g, and g, is

such that the coupling coefficients C;; are small com-
pared to the local propagation coefficients G;; and Gy,.
The coupled differential equations (3.4) or (3.6) may be
solved analytically using iterative approaches. One such
method expresses the solution in terms of an infinite
sum whose individual terms are associated with multi-
ple reflections in the inhomogeneous layer.! Using an-
other approach, the solution is expressed in terms of
an infinite product. Thus,”

¢, =g exp(f’ C}, dz)
n=0
=g exp(Z}f"' Ci'1>d2,
n={

in which g7 is the initial expression for the auxiliary
wavefunctions and

(3. 8a)

Cly = L(gD)gz/W(gl, g3), (3. 8b)
where the recurrence formula
gf:é:gf,z eprxCh dz (3.8¢)

is used to determine the successive expressions for the
auxiliary wavefunctions. A similar expression can be
written for ¢,.

Numerical solutions to the coupled differential equa-
tions (3.4) have also been obtained using the Runge—
Kutta method.? In general, it is necessary to choose g;
such that the coupling coefficients are not singular func-
tions of z.

4. CHOICE OF THE LOCAL WAVEFUNCTIONS FOR
CRITICAL COUPLING REGIONS WHERE |g%| >0
AND d(g*}/dz =0

In this section we generate suitable expressions for
the auxiliary wavefunctions, g;(z), for critical coupling
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regions of the inhomogeneous dielectric, €(z), where
lg*(2)|~0 (4.1a)
and the gradient of the permittivity profile vanishes,
hence
a(z) =d[q?(2))/dz = d[rn?(2)}/dz - 0. (4. 1p)

We assume here that for all z, p=p, and, for example,

for dissipative ionized media, ¢%(z) can be expressed

as?

¢*(z) =C* = X(2)/[1-iZ(2)], (4. 2a)
in which
X=(w,/w)? and Z=v/w, (4. 2b)

where the plasma frequency w, and the collision fre~
quency v are functions of z.

For regions that do not contain turning points (g% - 0)
the auxiliary wavefunctions g; are determined by the
following local propagation coefficients®:

Gy =—iky, Gp=ikyg. (4.32)

The coupling coefficients associated with (4, 3a) are for
147,
a dgl

;T - P = e i =1 2 j=1 20 °
C“ C]j Zq—g dzzq’ 1 or 4, 7 or (4 3b)

Substitution of (4.18) into (3. 4) yields the familiar
coupled WKB equations.? For critical coupling regions
the auxiliary wavefunctions, g;, are determined by the
following local propagation coefficients':

Gy == alky/a)?Pwi(8)/wi(8), i=1, 2, (4.4a)

in which w; and w, are independent solutions to the Airy
differential equations, the prime denotes differentiation
with respect to the argument

£=~ (ky/al*¢?,

and « is given by (4 1b). The coupling coefficients as-
sociated with (4. 4) are

Cyy==Cyy= %wiwj[(k//a)4 /344

+(k/a)?3q%(w]/w;)? ~ (w;/2w)) |’/ aW(w;, w,).
(4. 4c)

Numerical solutions to (3. 6) for permittivity profiles
with turning points have been obtained. The coefficients
G,; and Cy; in (8. 6) are given by (4. 3) for regions where
| &z)! = 0.5, and they are given by (4.4) for regions
where |£(z)| <0.5.° It can be shown that the reciprocity
and the energy conservation relationships are satisfied,
in general, only when the expressions for the coupling
terms C,; ({#j) in (3.4) are not neglected.

(4. 4b)

For critical coupling regions in which « also vanishes
(the ¢® profile has two neighboring simple zeros or when
q% and o vanish at the same point), substitution of (4.4)
into (3.6) yields a set of coupled differential equations
that are not suitable for numerical computations since
the coupling coefficients C;; in (4. 4c) are singular for
a=0. Thus in these cases it is necessary to choose a
different set of auxiliary wavefunctions. To this end we

recast k%q? as follows:
ki?=kilqh + a5 (2 — 20%/2]=K*(v +3 - £%/4),  (4.53)

in which
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dz
Tn=0%(z,), a5 =5=00)| , (4.5b)
b4 m
and z,, is the value of z where a vanishes, thus
9% =q%(z,) = 0. (4.5¢)

For a parabolic permittivity profile z,=const=z2,,
‘however, in general, z, in (4.5a) is given by

t=K(z - z,) =K[2(¢* - 42) /g% /2.

In order to obtain the proper square root, (4.6a) is ex-
pressed as follows:

(4. 6a)

-q%)/q% (2 = 2,2, (4. 6b)

where the principal square root is assumed in (4. 6b).
Thus 2,(z,) =2, and in general z; and z,, may be com~
plex. The constants K and v are given by

K=(-

(z -2zg) = (2 = 2,)[2(¢% -

2RGN (4.Ta)
and
v+5=kig2 /K2, (4. b)

The fourth root in (4. 7a) is chosen such that ¢ lies in
the first or fourth quadrant when Re(z — z,,) > 0. The de-
rivative of z, with respect to 2z is

d dq?
7?=[¢1?.."(Z—z ) - dqz ]/q?,,"(Z-Zo)-

On examining the Taylor series expansion of (4. 8) about

(4. 8a)

z=2z, it follows that
limfl—z—" -0, (4. 8b)
PR
The function k%¢% can also be recast as follows:
kia®=kElK, +q*"(2) (2 - 2)*/2] =K*¥(v +3 - £/9),
(4. 9a)
in which
t=K(z -z =Kq*'(2)/q%"(2) (4. 9b)
and
Ky =q%2) - [¢%'(2) /2¢%" (2). (4. 9c)
Thus in this case,
=[~2kfg*" () /¢, (4.10a)
v +% 3K, /K2, (4. 10b)
and
dzy_ o am 2” .
=@ @)/[a*" (@) F; (4. 10c)
hence
%"-—0 as df;(‘g) - 0. (4.100)

Both (4.5) and (4. 8) reduce to the same form when the
given ¢Z profile is parabolic. In general this is not the
case.When (4.5) is used to define the constant parameters
K and v (4.7), it is necessary to determine the value of
z,, (which may be complex) (4.5¢). However, when (4. 8)
is used though it is not necessary to determine the value
of z,, the parameters K and v are functions of position

2,
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To obtain the expressions for the local propagation
coefficients G,; in the region, where ¢®—~0 and o0,
we recast g% as in (4.5) or (4.9) and regard K, v, and
z, as constants. Thus in view of (4. 5a), the local propa-
gation coefficients are

G”:Ki

i _ ’
d{ anv(g) =In 8i»

(4.11a)

in which U1(¢) and U%(¢) are linearly independent para-
bolic cylindrical functions. For constant K, v, and 2z,
Ul(¢) are exact solutions of the differential equation
(3.5a) with p =const. Thus

2 2
(o5 oo

A suitable choice for Ui(¢) is given in terms of the
Whittaker function, thus®:?Z:

UNE)=D,(¢) and UR(g)=

(4.11b)

D-v-l(— Zf) (‘Lllc)
The coupling coefficients, C;;, associated with the local
wave solutions, g;, (4.11a) are evaluated in the next
section where the consequences of casting ¢% in forms
(4.5) and (4. 9) are discussed further.

5. DERIVATION OF THE COUPLING COEFFICIENTS
FOR THE LOCAL PARABOLIC CYLINDRICAL
WAVEFUNCTIONS

The auxiliary, local wavefunctions, g;, (4.11a) for the
critical coupling regions where lg%| -0 and dg?/dz =0
are

i}
g =exp(/a—z InU %) dz>.

For the general case considered, K, v, and z, are func-
tions of z; thus

(5.1

i d dgd  dvo ;
——U(§ ———U[K(Z_ZO] [dzéz-’—dzav]U(c)
(5. 2a)
in which
dg dz, dK
&—*K(l—-—z'>+(2—23) az (5- Zb)

Thus for regions of the inhomogeneous medium where
the permittivity profile is parabolic, (5.1) reduces to

=UiE), i=1,2, (5.3)

and L(g;) =0. However, for the general case considered
1 &2 g, 1d ., d

g, dz® g dz< Gu) =(Gy) dz Gipy (5. 42)

where G,; is given by (4.11) and d/dz is interpreted as
in (5.2). Thus it can be shown that

1 22 2 Ui’ szo
L&) [k v () |7

Ui’ TR (U aK
+{TJ”T-[‘E(§+7"5 §E

+K(8U” 18Ul U,i')ﬂ
ov UL ov (U dz

in which the primes denote differentiation with respect
to the argument {. The Wronskian W,(g, g,) can be
shown to reduce to
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W, (g, &) =Kgug;W(U}, UD/ULUL. (5. 4c)

The coupling coefficients C;; =— C;; =g, L(g;)/ W,(gi, &),
(3.7b), can now be written explicitly in terms of the
derivatives dz,/dz, dK/dz, and dv/dz. These derivates
vanish only for regions where the permittivity profile
is parabolic. Casting the ¢® profile in the form (4.5) we
determine dz,/dz for a particular permittivity profile
by using (4. 8a) while dK/dz and dv/dz are zero. When
the g2 profile is cast in the form (4.9), the derivatives
dK/dv, dv/dz, and dz,/dz are determined for a given
permittivity profile by using (4.10a), (4.10b), and
(4.11c) respectively. Thus, when the value of the criti-
cal point z =z,, given by (4. 5¢) can be readily deter-
mined, it is more convenient to cast g% in the form
(4.5). In this case the coupling coefficients reduce to
Cyj == Cy; = U U[RPq? + KX (UL U2 )dz /d2)K W (UL, U3)
(5. 5a)
with dz,/dz given by (4.8a), and for the particular choice
of the parabolic cylindrical functions given in (4. 11¢)
the Wronskian W, is

W (UL, UB) = — W (UE, U;)

=W(D,(8), D, 4 (~it)) = expli(v + )7/2]. (5.5b)
For the ¢* profile given by (4. 2),

o =X i[X(2)2'(2) ~ Z'(2) 2 (2) ]

Tl-—lZ(Z)]g o (5.5C)

Thus if Z is a constant or if X'/X=2"/Z, z, is real and
X'(zm) =0. In general, however, z,, may be complex.

6. TRANSITION REGIONS OF THE COUPLED
DIFFERENTIAL EQUATIONS

In Secs. 4 and 5 a choice of three sets of auxiliary
local wavefunctions, g;(8, 2), is considered to facilitate
the solutions of the coupled differential equation (3. 6).
The first choice which is suitable for slowly varying
media devoid of critical coupling regions (g%~ 0) leads
to the familiar coupled WKB equations. The wave am-
plitudes ¢;, the local propagation coefficients G;;, and
the coupling coefficients C;; associated with this choice
of the local wavefunctions g, are identified by the super-
script 1. Similarly for critical coupling regions where
(¢’ = o does not approach zero the local wavefunctions
are expressed in terms of Airy integral functions Ai
and Bi. The quantities ¢;, G;;, and C;; associated with
the second choice are identified by the superscript 2.
For critical coupling regions in which both ¢% and (¢%)’
approach zero, the local wavefunctions are expressed
in terms of parabolic eylindrical functions Ui(Z). The
quantities ¢;, G;;, and C,; associated with this choice
are identified by the superscript 3. Thus (3. 8a) is
written as

o7 =(GT, +CH)¢T, 4,j=1,2and m=1,2,3. 6.1)

To determine precisely which of the three formula-
tions is to be used in (3. 6) for a particular region of
the inhomogeneous dielectric, we examine the uniform
asymptotic expansions for the parabolic cylindrical
functions, D,(¢), derived by Olver.}’ For {v+3{> 1,
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1/
D,(2) ~(2m 3y +4) "2 exp[-v/2 - %][-;gt_—l] 4Ai(t),

(6. 2a)
in which
24322 +3) fl"[xz— 1]/2dx
=@+ (E - D2 In[x + (2= 112] (6. 2b)
and
x=r/20 +4)2, (8. 2c)
Thus
23/ L: (= B3P 2 dz = ik, f,: qdz, (6. 2d)

where the lower limit 2, (corresponding to x =1) is the
critical point defined by

q*(z,)=0. (6. 2e)

On employing the uniform asymptotic expansion for
Ai(t) we obtain for x# 1 and largt)< 2n/3,

D,(8) (v +4) 240 - DI Hexpl= (3572 +v/2 4 D).
(6. 3a)
For 2n/3 < argf < 4n/3
D8 =(+35)2exp(~v/2-1)
x [4(xz - 1)]_1 “[exp(— %ts 12y 44 exp(%ts /2)]_

(6. 3b)
In critical coupling regions where x -1 and £ ~0 it
can be shown that

tr (v +3)23(x% = 1) == [ky/q? (z,) R3¢ (6. 4a)
Thus for x—+1, /=&, where £ is defined by (4.4b), and

D, (&) =(2m /2y + 1) /21 /b expl—v/2 < $]AI(E). (B.4b)
For lx| =, 2372 (v +5)(x%~ %) - In(2x) and
D,(¢)=¢" exp(~ £2/4), largt|<7/2, (6. 5a)

D,(8) = (¢ exp(- £7/4) — (2m) /? exp(vmi) gV
xexp(£?/4)/(-v-11], 7/2<argf<m. (6.5D)

Using Stirling’s formula for (v +1{>1 it can be shown
that

(_ v 1), :(zﬂ)1/2<:fr>V+l /2°

ST (6.5¢)

Hence the solutions of (3. 6) identified with the super-
script m =3 merge with the solutions identified by the
superscript 2 for critical coupling regions where g%~ 0
and (g%’ # 0(x =1). These solutions merge with the solu-
tions identified with the superscript 1 for regions where
q%# O even when g%’ — O(x - 0). For regions where both
¢*~0and ¢’ —0, £~0and v +3 -0, thus the asymptotic
expansions (6. 2)—(6.5) are not applicable. The coupling
coefficients C; and C%; are singular in this region and
(6. 1) is solved with m =3. The parabolic cylindrical
functions Ui(¢) for £~0 and ¥ +5 —0 are readily evaluat-
ed in terms of a series of ascending power of ¢.°

To determine which of the 3 formulations of (8.1) is
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used to solve for the wave amplitudes ¢; in any particu-
lar region, it is necessary to examine the independent
variables £, (4.6a) or (4.9b) and £ (4.4b).® For I¢|
<0.5 we set m=3 in (6.1) when ¥ +31<0.5, and m=1
when |v+%1>0.5. However, for 1£/>0.5, we set m=2
when | £1<0,5, and m=1 when | £] >0.5.

At an interface 2 =2z; where a change is made from
one formulation of (6. 1) to another it is necessary to
impose the continuity conditions for the transverse com-
ponents of the electromagnetic field. Thus for m, [
=12, 3,

o + o5 =¢1 + ¢} (6.62)
and
Glig{' + oy = G191 + Ghats. (6. 6b)
Hence at 2 =z #z,
¢ \_ ml . Gp=Gly GR—Gh\ (¢
o) =~ Ci\ch-on ch-cn)\ei) &5

The source term J in (3.4) results in a jump in the val-
ue of ¢; at the plane z =z passing through the line
source. Thus on integrating (3.4) with respect to z in
the infinitesimal region about z =z, we get for m=1, 2
or 3,

ozl - Ty =1/2nYT

and

(6.7a)

5(z3) = p7(23) ==1/27Y7, (6. 7b)

In solving (3. 4) numerically the source term J is set
equal to zero and conditions (6.7) are imposed at z=2z,.

7. CHARACTERISTIC WAVE PARAMETERS FOR AN
INHOMOGENEOUS DIELECTRIC SLAB

We consider here an inhomogeneous dielectric slab
of thickness L bounded by semi-infinite homogeneous
media €= ¢, for z <0 and € =€, for z = L and assume
that the slab is excited by a horizontally polarized wave
incident from below the slab (z < 0) at an angle 6, given

by
sinf, =S, =8/k. (7.1)

From the continuity conditions for the transverse elec-
tromagnetic fields at z=0 and z=L we get

aB,O\_ 1
5(3, 0) 2iky Cy

$1(8,0)
$2(8, 0)

ik Cy - G1(B, 0) ik Cy - Gz(B, 0)
“\ik,Cy + G4 (B, 0) ik, Cy + Gy(8, 0)

and (7.2)

a(@, L)

_ G,(8, L) +ikyC,
Gz(ﬁ; L) - Gl(ﬁ; L)

=GB, L)~ ik,Cy [’
(7.3)

¢1(8, L)
¢2(65 L)

in which a(8, 0) and 5(8, 0) are the amplitudes of the in-
cident and specularly reflected waves at z=0, (8, L)
is the amplitude of the transmitted wave at z=L, and
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B=ki(1=C)'% ky=wluee)?,

Im(k;) <0, Im(@)<0, Im(C)<0, i=1,2, (7.4)

Thus the reflection coefficient at the reference surface
z=01is

R(B)=0(8, 0)/a(8, 0), (7.5a)
and the transmission coefficient is
T(B) = a(g, L}/a(8, 0). (7. 5b)

The characteristic surface impedance is defined as the
ratio- E,/H,, thus for z=0,

Z,(B) = m/CP[1 +R@)/[1-R(@B)]
=[¢1(8, 0) + $,(8, B 1/[¥1(8, 0)¢,(8, 0)
- Y,(8, 006,(8, 0)],

in which 1; =+ u€; is the intrinsic impedance. When the
layered dielectric structure supports trapped waveguide
modes {conditions for total internal reflection within the
slab are satisfied) the reflection coefficient R{8) is a
singular function of 8. Thus the wave parameters S,
associated with the guided waves satisfy

1/R(8) =0, Im(C<0(i=1,2),

(7.6)

(7.72)

and the surface wave contributions to the fields are ob-
tained by evaluating the residues of the integrand in

(2. 4a) at the singular points 8§ =g,. The surface waves

can be excited by an electric line source (2.2) or by an
incident plane wave provided there are lateral inhomo-
geneities in the dielectric slab.!!

Since the coupled differential equations (3. 6) can be
solved numerically with z=_L as the initial point we can
set a(B, L) =1 for convenience, thus T(8)=1/a(8, 0)
and condition (7.7) reduces to

alBs, 0)=1/T(@y) =0, (7.70)
The realizability condition, when the sources are below
the dielectric slab, is obtained from energy considera-
tions. For all z= 0,

Re(- EHy)=Relpy +¢,1%/Z% >0,

hence Re{Z ) = R,> 0 is consistent with the definition
of Z, (7.6) and

(7. 8a)

Re(1- |1rc12+1r;:-1t2*)cik >Re ({T[Z%)z 0, (7.8b)

n
in which the symbol * denotes complex conjugate. If ¢,
and €, are real and both S; =8/% and S,=8/k, are real
and less than unity (uniform plane waves above and be-
low the slab), (7.8b) reduces to

(1= |R[®Cy/m > [T|?Cy/ms, (7. 8¢)

in which C; and n; are real, and for a nondissipative di-

electric slab the equal sign is used. When S; <1 and

S,>1, C,is imaginary and (7. 8b) becomes
a-1r»=0. (7.8a)

For a nondissipative slab this case corresponds to total
internal reflection of the incident power and

|R|2=1. (7. 8e)
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When the source is near the lower boundary of the di-
electric slab it is necessary to account for the excitation
of evanescent waves characterized by S; > 1, In this case
C, is imaginary, and, if S,>1, (7.8b) becomes

Im(R) <0, (7. 8f)

with Im(R) =0 for a nondissipative slab. However, for
S>1and S, <1 some energy is transmitted to the region
z > L, even though the incident wave is evanescent. In
this case (7. 8b) reduces to

@l ¢|/m)Im(=R) 2| T|2C,/n,, (7.8g)

in which the equal sign is used for nondissipative slabs.

In view of the normalization used in (2.4) and (3.1)
the reciprocity relationship in electromagnetic theory
is

T, (8) C1/Th = Tz(B)Cz/nz; (7., 9

in which 7(8) and 7,(8) are the transmission coefficients
for waves incident from below and above the dielectric
slab respectively.

We conclude this section with an illustrative example.
Consider a horizontally stratified ionized slab of
permittivity,

e(2) =€¢nt(2) = ¢,(1 ~ X(2)),

and assume that e =€, for 2<0 and z >L. Thus (2. 8¢),
i.e.,

O<zs L, (7.10a)

q%(z) = C* = X(2), (7. 10b)
where

X(2) =(w,/w)¥=X, sinTz, (7.10¢)
and w, is the plasma frequency. Thus by setting

X, =C? T=m/2L, (7.10d)

the permittivity profile (7.10) contains a critical coupl-
ing point at z,= L where both ¢*=0 and ¢*'=0. The di-
electric slab is assumed to be excited from below {z < 0)
by uniform plane waves at angles of incidence 8. Thus

0<C*=cos®0<1, (7.10e)

The computer program used to calculate the reflec-
tion and transmission coefficients R(8) and T(8) respec-

TABLE I. Numbers in parentheses are for inverted permittiv-
ity profile (7.12).

6 R(p) TE) Z.B)/n

0 .197-4.575 —.240—4. 757 .646 —41.18
(.492+,357)  (~.240—14.757) (1.64+141.85)

9m/100  ,254 — . 543 ~.192 -4, 776 .752 — 41,28
((478+4.363)  (~.192—4, 776) (1.58+41.79)

197/100  .405—i.396 —.019-14,824 1.33—141.55
(.422+,378) (- ,019-4.824) (1.43+41.59)

297/100  .475—1i,094 .297 —4.823 2.69—14.659
(.305+4.376)  (.297-4.823) (1.23+41,20)

397/100 .262+4.169 .721 — 4. 617 1.57+4.588
((125+7.285) (.721—4.617) (1.07+4.673)
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tively, (7.5), and the surface impedance Z(8), (7.6),

is based on the representation of ¢2 in terms of X, v,
and ¢ as given by Egs. (4.5)—(4.7). Thus the coupling
coefficients C,;, (3.7b), are obtained from (5.4) using
(4. 8a) for dzy/dz and setting dK/dz =0 and dv/dz=0,
The numerical solutions are subjected to the energy con-
servation test, (7.8¢c), and the reciprocity test, (7.9).
For the special case considered, ¢ =¢,=¢;, and
Im[e(z)]=0, thus (7.8c) reduces to

1- [R[2=]T]2, {(7.11a)
and (7. 9) reduces to
T,(8) = T,(8). (7.11b)

To obtain T,(8), instead of exciting the dielectric slab
from above (z > L) it is simpler to invert the permit-
tivity profile. Thus (7.10¢) is replaced by

X(z) =X, sinT(L - z), (7.12)

and therefore for this case the critical coupling point

is at z,= 0. These computations are shown to satisfy
both reciprocity and energy conservation relationships
to at least three significant figures. For the profile con-
sidered with L =0, 5 wavelengths, the computer program
uses all three formulations (m =1, 2, 3) of the coupled
differential equations, the transition equations (6. 6c),
and the boundary conditions (7.2) and (7. 3) (see Sec. 6).
The electromagnetic field components E, and H, and the
propagation parameters R(8), T(8), and Z,(8) for each
angle of incidence 8 are computed in 2.5 seconds. Re-
sults of these computations are given in Table L

8. CONCLUDING REMARKS

A generalized WKB approach has been applied to deter-
mine the excitation of horizontally polarized waves by
an electric line source in an inhomogeneous dielectric
with critical coupling regions in which the gradient of
the permittivity profile also vanishes. This method is
based on the conversion of Maxwell’s equations into a
set of ordinary first-order differential equations for
the wave amplitudes ¢; which are related to the electro-
magnetic field transforms through the wave admittances
Y;, (3.1). To facilitate the solution of these equations,
the expressions chosen for the wave admittances locally
depict the principal characteristics of the permittivity
profile. To this end the inhomogeneous dielectric is
subdivided, in general, into three regions. For slowly
varying media devoid of critical coupling regions ig!
>0.5and |£] >0.5, we set Y;= q/7, where 7, is the
free space intrinsic impedance. For critical coupling
regions (¢°=0) where a=(q%  does not approach zero,
|§ | >0,5 and |£|< 0.5, the local wave admittances are
given by (3.2) with (4. 4a) substituted for In"g;, =G;,.
These two regions were dealt with in an earlier analysis
of the problem.” Since the formulation of the solution
in terms of the coupled wave amplitudes (3.4) is rigo-
rous, numerical solutions for the reflection and trans-
mission coefficients R(8) and T(8) have been computed
accurately to five significant figures as evidenced by
reciprocity and energy conservation tests.® A program
has been written to compute the electromagnetic fields
in an inhomogeneous dielectric slab together with the
surface impedance and the reflection and transmission
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coefficients for an incident plane wave. The exection
time for a single incident plane wave is less than one
second for either nondissipative or dissipative dielec-
trics. If the coupling terms C,; are neglected (as is
done when approximate procedures are used), good
agreement with energy conservation and reciprocity re-
lationships is not achieved.

The earlier analysis of the problem’ and the computer
program based upon it is not suitable for inhomogeneous
dielectrics with critical coupling regions (g% —0) where
a=(¢%’' -0, since the coupling coefficients C;; become
singular. This limitation has been removed in our pre-
sent analysis through an appropriate choice of the local
wave admittances Y,;. Thus for critical coupling regions
where ¢?~0and o —0, |£]<0.25, Y, is given by (3.2)
upon substituting (4. 11a) for G;;=1n'g,. Two different
local characterizations of the g% profile [(4.5a) and
(4.92)] are considered in detail and the corresponding
coupling coefficients C,; are derived (Sec. 5). By using
(4. 5a), for instance, it is shown that C;; — 0 as both ¢*
and « approach zero. Thus the present formulation of
the first-order differential equations (3.4), for the wave
amplitudes is readily solved using standard numerical
techniques, ® even for regions where ¢% -0 and o —0.
(Sec. 7).

In Sec. 6 several uniform asymptotic expansions for
the parabolic cylindrical function D,(¢) have been pre-
sented to demonstrate that the local wave solutions for
parabolic permittivity profiles merge with those de-
rived earlier for regions where q%'#0. However, to nu-
merically solve (3.6), it is not necessary to evaluate any
of these asymptotic expressions. The parabolic cylin-
drical functions D,(Z) are used only in regions of the
permittivity profiles where |v+%1<0.5 and 1£1<0.5
(¢ -0, ¢%"~0) and the Airy integral functions w,(¢) are
used only in regions where £-0 (¢?~0, ¢®'#0). Thus
only series expansions of D,(¢) and w;{£) in ascending
power of the arguments { and £ respectively are needed
for the purpose of the numerical computations. Realiza~
bility and reciprocity relationships for inhomogeneous
dielectric slabs are examined and expressions for the
reflection and transmission coefficients and the char-
acteristic surface impedance have been derived as func-
tions of the transverse wavenumber 8. The surface
waves supported by the inhomogeneous dielectric are
shown to be characterized by the wave parameters B,
given by 1/R(B) =0, (7.7a).
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It is interesting to note that the technique used to trans-
form Maxwell’s equations into sets of ordinary first-
order differential equations for the wave amplitudes is
also used in solving problems of propagation in irre-
gular waveguide structures.!? The advantages of employ-
ing basis functions (and corresponding wave admittances)
that locally depict the principal characteristics of the
irregular guiding structure have been examined for
waveguide bends and transition sections.!®**
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The generalized distribution functions o, (e) specify the probability of finding a subset of # molecules in a
specified configuration and simultaneously a subvolume empty of all other molecules, whereas the
conventional distribution functions p, specify only the configuration. The Mayer integral equation theory

for the p,, is generalized assuming short-range intermolecular forces to express both the p, and o, as sums of
integrals over the o, and a kernel dependent on the forces. For the nearest-neighbor lattice gas, certain of
these relations are equivalent to those obtained by Widom and Van Leeuwen for the probabilities f, that an
empty site is surrounded by n filled sites. The intimate relation of these relations, the Kirkwood-Salsburg
integral equations, and the generalized distribution functions is thus displayed.

1. INTRODUCTION

The distribution functions usually employed in
equilibrium classical statistical mechanics are defined
by the statement that p ({r}) is the probability of finding
a set of » molecules in the arbitrary configuration {n}.
Occasionally certain generalized distribution functions
have been used. An example is the function o, {{n} w),
which is the probability of finding a set of # molecules
in the arbitrary configuration {n} and simultaneously
a particular subvolume w of the system empty of all
molecules except possibly for members of set n with
specified configurations. A further example is the oc-
cupation probability obtained by averaging ¢, over all
configurations of set #» within w. Such quantities some-
times appear as adjuncts in the derivation of results
involving the conventional distribution functions, for
example in the derivation of fluctuation theorems. !-?
They have also been studied in their own right in order
to obtain alternative descriptions of the properties of
classical fluids. 3=%

In Secs. 2 and 3 of the present paper we use the
methods of Mayer’s theory of integral equations® to give
a compact derivation of various integral relations be-
tween the two kinds of distribution functions assuming
short-range intermolecular forces. The results express
each p, as a sum of integrals containing ¢, functions and
a kernel dependent on the forces. The set of formal
relations derived here is more complete than that
presented in earlier papers, and the derivation allows
a clearer view of how the generalized distribution func-
tions fit into the ordinary integral equation theory. One
advantage of the development is that it leads in an ob-
vious way to new integral relations involving only o dis-
tribution functions. These are given in Sec. 4,

It is shown in Sec. 5 that for the particular case of
a nearest-neighbor lattice gas some of the results in
Secs. 3 and 4 reduce to equations derived by Widom’
using an unconventional method of studying certain
averages of the potential energy of a test particle. The
equations contain the probability f, that an empty site
is surrounded by exactly » filled sites. For a lattice
with Z nearest neighbors per site the four equations re-
late the Z + 1 occupation probabilities to the internal
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energy function, the activity, the concentration, and to
¢/kT, where —e¢ is the nearest neighbor interaction en-
ergy. For Z =3 the thermodynamic functions determine
the f, completely and for Z=2 they imply a certain par-
tial differential equation for the grand partition function.
Van Leeuwen® rederived these results in a more con-
ventional manner and obtained additional results in-
cluding a relation between next-nearest-neighbor cor-
relations and the functions f,. We refer to his paper

for a full discussion of the significance of these results.
There appear to have been no other studies of this very
economical and graphic description of a lattice gas,
perhaps partly because the functions f, do not seem to
occur naturally in conventional statistical mechanical
procedures, One of the main objectives of the present
formalism is to display the intimate relationship of the
Widom results both to the Kirkwood—Salsburg integral
equations,9 which are a subset of the Mayer equations,
and to the theory of generalized distribution functions
for fluids.

2. DISTRIBUTION FUNCTIONS IN THE PRESENCE
OF AN EXTERNAL FIELD

A. Molecular distribution functions p, ()

We consider a system of volume V, temperature 7,
and activity z in the presence of an external field ¢. The
potential energy due to this field of a set of #» molecules
in configuration {n} is denoted by ¢ ({n}). The grand
canonical ensemble results for the partition function
% () and the conventional distribution function p,({r} ¢)
giving the probability that there is a set of » molecules
at the coordinates {n} within the volume element d{n}
are summarized by®

G (9)=27 (z%/m!) S Grnl@) i}, 2.1)
where

G (@)= (p)p,({n}| @)/ 2", (2.2)

GA(@) = Glexp[- ¢, ({n})/kT], (2.3)

Gt =exp|- U ({n})/RT]. (2.4)

U, is the potential energy of the set of n molecules apart
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from the contribution from the external field ¢. The
convention used here that G%(¢ = 0) is written simply as
G’ is applied to all functions ¢. The convention p,=1 is
also used. The inverse of (2.1) is

@)= T [(-

m=0

2/ m11 [ G el @) dlm.

The generalization to multicomponent systems of
these equations and the ones which follow can be made
very simply following Mayer’s method. ®

(2.5)

Equations (2,1) and (2, 5) can be combined to give

Glo=2 2 [ Conl@)

[
m=0 n 14 Gn+m

(E( 2)! fv G d{z})d{m}.

1=0

(2.6)

In this equation we next replace I by p — m and note that

D D > I

2.7
mz0 p=m>0 220 m=0
so that the result is
G, ()= 2 (z»/p‘)f G ey K ol @) B}, (2.8)
p20
where the kernels are defined by
K, o @)= Q1 {m} )= PG, L (0)/ L, (2.9)

The summation (F {m}p is over all the possible subsets
{m}p of the set p. There are p!/m!(p —m)! different
distinct subsets of size m.

When ¢, for any set of » molecules has the form

o= 2 ¢,(@), (2.10)
iCn
then Eq. (2.8) reduces to the basic equation of the func-
tional formalism as used by Munster and others, 10!
Here (i) denotes the configuration of molecule ; and the
summation is over all molecules of the set n. Equation
(2. 8) is not one of the Mayer equations® but is a con-
venient generalization.

B. Generalized distribution functions o,, {w,y)

We define o ({n} w, ®) to be the probability that in a
system in the field a set of » molecules will be found at
the coordinates {n} and simultaneously a particular
subvolume w be empty of all molecules except possibly
for members of set ». By arguments similar to those
which lead to Eq. {2.1) we can obtain

S0, 0)=2 (z'"/m')f Gl @) dim}, (2.11)
where the abbreviation
Q(w,9)==2(@)o,({n} w, @)/ 2" (2.12)

has been used, The positions of the molecules of set m
in the integral are constrained by the limits of integra-
tion to the volume V minus its subvolume w.

C. Relationships between p, and ¢, functions

Now suppose that an external field is applied which is
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nonzero only within the subvolume w. We denote such a
field by ¢(w) and the potential energy due to this field of
a set of » molecules in configuration {n} by o {nHw). It
is straightforward to show that the kernel K,, n @)
is zero if any molecule of the set p is outside of the sub-
subvolume w. Hence the integral equation (2. 8) can he
written in the form

G (¢(w))=

»20

ZP/P mep b*n,n,0 (go(w))d{p}, (2.13)

where the range of integrations is restricted to the
subvolume w,

For the purposes of the present paragraph only
consider a particular external field ¢(w) such that the
potential energy due to this field of any set of molecules
assumes the form in Eq. (2.10). It follows from Eq,
(2.1) that the function

G (9(w)) =G, o(w))/ exp[- ¢ (w)/kT] (2.14)

can be calculated from
Gl(@(w)) = Z) (z’"/m') j G, expl- ¢, (w)/kT)d{m}.
(2.15)

For the case of a field such that ¢,{w) =~ everywhere
with w for any molecule, the right-hand side of Eq.
(2.15) is seen, by comparison with (2, 11), to be equal
to @,(w). Hence, by dividing both sides of Eq. (2.,13)
by exp[- ¢, (w)/kT] and considering the same kind of
field one obtains an expression for @, (w). The function
Kponmol@(w))/ expl- ¢, (w)/kT] therein is equal to (- 1)
when the members of set p are all within w and so the
result is

Q) =2 [(-2/p!1[ G,d{p} (2.16)
»20 w
The inverse of the last equation is
G,=2s (z7m!) f Q, () d{m} (.17

m20

as can be verified by substitution for @ in (2.17) using
(2.18).

The functions G,,, can now be eliminated from the
expansion of G (¢(w)), Eq. (2.13), by substituting the
definition of the kernel functions K° and the identity for
summations in Eq. (2.7). By employing Eq. (2.16) one
obtains the result

G (plw)= 2 (Z"‘/m‘)f expl— @, (0)/ R T]Q (@) dim}.

m>0

(2.18)

The inverse is

xp[- ¢ (0)/ET]Q,(w) = 20 [(~

m=0

z2y/m!'] [ G ule(w)) dim}.

(2.19)

The principle results of this section are Eqs. (2.18)
and (2.19) which reduce to (2.17) and (2.16) for ¢ =0.
The latter equations were previously obtained by Squire
and Salsburg? in a different way.
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3. INTEGRAL RELATIONS BETWEEN THE p,
AND o,

Integral equations for the various distribution func-
tions can be obtained by identifying the external field of
the previous section as being due to a set of £ molecules
fixed in configuration {k}. In that case we have

@, {n}) = U, (fn}:{e}), (3.1)
where

U, ({6} = U, (fn+ &) = U, (n]) - U, {ED). (3.2)
Equations (2.1) and (2. 8) then give

G36 (@)= Gpp= 2 (2/p1) [ CpyBppnad{p).  (3.3)

p»0

These are the Mayer integral equations® for the dis-
tribution functions G. For a system with pairwise inter-
molecular forces the set of equations with =0 and k> 1
is equivalent to the Mayer—Montroll hierarchy® and the
set with =1 and n= 0 is equivalent to the Kirkwood—
Salsburg hierarchy.®

The same identification of the external field as being
due to a set of & fixed molecules can be used in Eq.
(2.18). In this case we assume that the range of inter-
actions has a cutoff so that for a set of # molecules in
configuration {¢} we may define a subvolume, w({t}),
such that any other molecule has nonzero energy of in-
teraction with set % if and only if it is within the sub-
volume. Equation (2.18) then reduces to

=2 (2"/m") [ QunlolE})

m#»0

X(GSar/ Coom) A (w({}) dfm}, 3.4

where the function A_(w({£})), which is unity when all
molecules of set m are within w({¢}) and is zero other-
wise, has been introduced to avoid a complicated sub-
script on the integral sign.

The last equation can also be derived directly from
the Mayer equations (3.3) by similar steps to those used
to obtain (2.18) from (2.13). An equation equivalent to
(3.4) with 2=1 and =0 has been obtained by Squire and
Salsburg? from the corresponding Kirkwood—Salsburg
equation for pairwise forces. The attraction of Eqs.
(3.4) compared with the Mayer equations is that the
number of nonzero terms on the right is much less at
least for short-range forces,* The strikingly compact
results of Widom for the lattice gas™® are an example
of this as we shall see in Sec, 5. The difficulty is to
find a self-contained method for calculating the func-
tions @,, and this has never been satisfactorily solved.
It is interesting that the present method leads to certain
relations involving only the @, functions as follows.

4. INTEGRAL RELATIONS BETWEEN THE FUNCTIONS
o, ALONE

The steps which lead from (2,1) to (2. 8) and (2.16)—
(2.19) can be applied to the basic equation for Q,, Eq.
(2.11). The results are
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Q,(w,9)= 21 (22/p! f Q,,.,(w) S enmol @) d{p}, (4.1)

p»0

Qfw, 9= 2 (z%/m!) [ expl= @, (w)/kT]

X Qo (@ + w") d{m}, (4.2)
expl- ¢,(w")/RT]Q (w+w) =20 [(-2)"/m!]
X[ Quuplw, o(w))dim}, (4.3)

w! =y
' -~ w denotes the subvolume w’ minus any part of it
which is common to the subvolume w. Equations (4,1)—
(4.3) with w=0 are equivalent to Eqs. (2.8), (2.18), and
and (2.19), respectively. Equations (4.2) and (4. 3) with
@ =0 give two further equations which are equivalent to
(2.17) and (2.186) for w=0.

5. WIDOM'S RELATIONS FOR A LATTICE GAS

We consider an homogeneous lattice gas in which the
interaction potential for a pair of particles is ~¢ (¢>0)
when they are nearest neighbors, < when they are on
the same site, and zero otherwise. Integration signs
are now interpreted as appropriate lattice summations.
The subvolume w({k}) for a single particle { in con-

figuration (7) will be written
w(@)=8@)+ Z(i), (5.1)

where S(7) denotes the particular site occupied by the
atom and Z(i) denotes the Z sites nearest-neighbor to
that site. Finally, we define

x=exple/kT), u=-U/Ne,

where U is the mean potential energy.

(5.2)

Two of Widom’s relations follow almost at once from
Eq. (3.4). When set k comprises a single particle
labelled (i), Eq. (8.4) reduces to

P {n}, () 2=exp[- U, ,({n}:(:))/T]

X(2 xmp,, (| @), 5.3)
where

. Dol @)= (m ) 1fV(T,.m,({m+n}| w(@)

x A (2(3) d{m}. (5.4)

A_(Z(7)) is unity when all members of set » are on the
specified Z nearest-neighbor sites and is zero other-
wise. Thus p,,,,({n}| (?)) is the probability of finding »
particles in configuration {n} and simultaneously a par-
ticular site S(i) empty and with exactly m nearest-
neighbor particles in addition to any members of set »
which are nearest neighbors.

For n=0 Eq. (5.3) is equivalent to the Widom relation

¥4
o/2(1 —p)=(20 xmf,),

m=0

(w1)
where f,,=p,.,o(1 - p)™* is the probability that a vacant

site has exactly m particles as nearest neighbors and
p is the fraction of sites occupied by particles.
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When the particle of set 1 is a nearest neighbor to
S(i), one can obtain from (5.4)
me/1=(7’n+1)P(mu)/o- (5-5)

For n=1 Eq. (5.3) for the pair distribution function p,
for two nearest-neighbor particles can then be reduced
to

VA
pp=2(1 = p)( 20 mx™,)/ Z

m=0

(5.6)

This leads to Widom’s relation for the internal energy
z

20u/2(1 - p)=( 22 mx™f,).

m=0

(W2)

For Z> 2 one cannot, of course, express p, ,, (n>2)
in terms of the f,, and so the theory of the higher order
distribution functions introduces parameters additional
to the f,_. However, from (5.3), one average can always
be calculated from the f,:

J Pk, 00)8,(26)) afn}

4
=225 11-1)e U -n+Dx*p,,, n<Z.

1=0

For n=0,1 this is equivalent to (W1) and (5. 6).

(5.7

The two remaining Widom relations and an additional
result due to van L.eeuwen follow in the present context
from (4.2) with ¢=0:

2 my'[ o

ntm
m=0 @t aw

o (w)= (w+ w)d{m}. (5.8)
The choice n=0, w=S{), w’ - w=Z({) leads at once
to the obvious normalization condition
Z
2 f,=1 (W3)
m=0
when it is recalled that o,(S(:)) is (1 - p). The deriva-
tion of the remaining equations can be simplified by
introducing®:12

=(m!) f Trom (@), {m}| 0B (Z( i) dim},
i, —(m lf o ({m}]Z(z DA (Z(i)) d{m}.

g, 1s the probability that a particle has exactly m
nearest neighbor particles and %, the probability that a
site has exactly m nearest-neighbor particles no matter
whether the side is filled or empty. By definition one
has

hm:pgm+(1—p)fm (5.10)
as can also be derived formally from (5.8). The ad-
ditional relation

pg,=2x"(1 -p)f, (5.11)
follows by substituting

04, (@), {m}|w(@)=

=zexp[-U,,,,({m}:@)/kT]o {m}| w() (5.12)

into the definition of g,. The last equation follows
directly from the definition of o functions, Eq. (2. 11),

The remaining relations express the fact that the
average defined by

$,= [ p{ubs (2@)dln}, n< 2,
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(5.13)

can be expressed in terms of the f, functions when ; is
not a member of set #. Substituting for p = O’R(O) from
(5.6) with =0 and w’= Z({), one obtains

V4

S, =2 m(m-1)22(m-n+h,

m=0

z
= E mm =Lyeee{m—n+1)
"% [1+zx™]f (1 ~p).

For n=1 one has S, =Zp, and then the last equation
combined with (W2) leads to
zZ

(Z -2u)p/(1 - p).

For n=2 Eq. (5.13) involves at least nearest-neighbor
pair correlations. The consequences of this for Z=3,4
have been discussed. ?

The emphasis in the papers on the Widom relations™?
was very much on exact properties of the Ising model.
The most important missing element is a generalization
of the virial theorem to lattice gases which would relate
the pressure to p, or the generalized distribution func-
tions. The present scheme suggests no way of doing this
this. It does give integral equations, (4.1)—(4.3), which
could be solved approximately for the functions p,,,, and
hence for the Widom functions f, . This is a more
economic procedure than solving the Kirkwood—=Salsburg
equations for the p, because it removes the kernel K°
which has the inconvenient property of being nonzero in
configurations in which particles are assigned to the
same site.'® However, as far as we have been able to
discover, the functions do not lend themselves to making
approximations which appear radically more attractive
than those employed in other methods, and the equa-
tions are still very unwieldy. Since there are already
many approximate methods for the classical lattice gas
problems,; we do not discuss this further. We have,
however, found the scheme relatively advantageous in
treating the properties of dilute systems of interacting
lattice defects such as impurities and vacancies in sys-
tems which show order —disorder phenomena in the ab-
sence of the defects. This aspect is being studied fur-
ther because conventional methods for lattice defects'*
are not suited to such systems.

(5.14)

21 mf, = (W4)

*Member of the Chemical Physics Centre, University of
Western, Ontario.
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The Galilei group and its connected subgroups
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All the connected subgroups of the Galilei group G— and of its central extension G—are determined and
classified up to a conjugation of G—respectively G—and also up to an isomorphism. In order to construct
these subgroups, some general properties on subalgebras of a given Lie algebra have been proved. It is
interesting to note that the subgroups of G are derived from the subgroups of G.

1. INTRODUCTION

Recently the classification, up to a conjugation, of
the connected subgroups of the Poincaré group P has
been achieved.! As an application of this study, it has
been possible to select the connected subgroups of P
invariance groups of electromagnetic fields—and also
to determine explicitly these fields. 2

Here a similar classification is undertaken for the
Galilei group G, ® In fact we must distinguish G (ten-
parameter group) from its physical extension?! G
(eleven-parameter group).

The knowledge of the connected subgroups of G and G
can be used in several types of physical problems, in
particular:

(i) A study similar to the one given in Ref. 2 in the
relativistic case could be considered, i.e., the classifi-
cation of the connected Galilei subgroups which are
invariance groups of electromagnetic fields and the
determination of these corresponding fields. 5 Cases of
physical systems placed in an external field have al-
ready been studied by the help of representations of
their corresponding invariance groups: let us mention
the study concerning a nonrelativistic particle in the
tield of a constant and uniform electromagnetic field®
and also in the field of an electromagnetic wave in the
dipole approximation, " The conclusions which are drawn
from these group theoretical analyses of elementary
particles in an external electromagnetic field gives rise
to the interest of a complete study of these invariance
groups.

(ii) As is well known, the free Schrddinger equation
is invariant under the Galilei group. More precisely, it
has been shown by Niederer? that the greatest invariance
group—acting on space—time—of the free Schrédinger
equation is what has been called the Schrodinger group,
Sch, a twelve parameter Lie group, which, of course,
contains G as a subgroup. ® Then, the knowledge of the
subgroups of G allows us to compute the different
types of interaction potentials invariant under sub-
groups of G and therefore to classify the Schrddinger
equations corresponding to systems of particles in in-
teraction, and carrying a symmetry, according to their
invariance groups. It must be noticed that, for such an
investigation, it is more interesting to know the sub-
groups of G up to a conjugation under Sch, than up to a
conjugation under G itself. However, it can be added
that the table of the subgroups of G will project light on
the classification of the subgroups of Sch.*
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(iii) It is worth noticing Ref. 7, in which an interest-
ing use of some subgroups of G is considered in order
to find the evolution operator allowing to go from the
Schrddinger picture to the Heisenberg one, for systems
the Hamiltonian of which possesses as invariance group
a subgroup of G whose subgroups have particular
properties,

We must add that studies of the closed subgroups H of
the Euclidean group E and of the Galilean group G have
already been achieved!!: In these works the authors are
interested in the corresponding homogeneous spaces
E/H and G/H bearing a bounded invariant measure in
view of the description of ergodic states of a C*-algebra.

Now concerning the following study, let us point out
the three following points already mentioned in Ref, 1:

(a) The classification of all the connected subgroups
of a connected Lie group G is given by the classifica-
tion of all the Lie subalgebras of the Lie algebra G of
G.

(b) It is clear that we are interested in subgroups up
toa con]ugatzon In fact the subgroups (subalgebras) of
G (g yand G g) will be given + up to a conjugation of
G, +up to an isomorphism,

(c) One can remark that if the set of the subalgebras
of a Lie algebra (§ is a lattice, the set of the conjugacy
classes is not (in general) a lattice, but only a partially
ordered set {p.o.s.) II(() (order = inclusion).

This paper is built as follows: After recalling some
essential properties of the Lie algebras g and § (Sec.
2), a general theorem describing the maximal sub-
algebras of a real Lie algebra is settled (the proof of
which is given in Appendix A) and applied to the deter-
mmatmn of the maximal subalgebras (sons) of g (and

~7) and of the maximal subalgebras of these maximal
subalgebras (grandsons) of G (and g) (Sec. 3).

The cla§sification of the one-dimensional subalgebras
of ¢ and (; by the help of invariants is given in Sec. 4.

It is then shown in Sec. 5 how to deduce simply the
subalgebras of § from the knowledge of the subalgebras
of g .

The two last sections are devoted to the determination
and classification of the g-subalgebras of dimension be-
tween two and six, and of the (;~subalgebras of dimen-
sion between two and seven, All the results are
gathered in several tables.
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The Euclidean groups in g {and G 7) are specially
studied in Appendix B.

2. STRUCTURE OF THE LIE ALGEBRAS ¢ AND ¢
A. Group law of G and commutation relations of ¢

(and g)

Let us write the most general element g of G, g
=(d,c,b, R), R being a rotation, b a pure Galilean
transformation, (d,c) a space—time translation, ?

The group law is then
g'g=W,c' b, R)d,c,b,R)
=(d’ +d,c’+R’'c +db’,b' + R'b, R'R).

By considering an infinitesimal transformation

d,c,b,R)=1-1i(5,7,B, a),
the action of G on its Lie algebrag can be written
@,c,b,R)(5,7, 8, ad,c,b, R

= (5,7, 8", ")

= (5, Ry + 5b—d RB— (Ra) A (c — db), RB- (Ra)A b, Ra).

2.2)

By the help of the representation (2. 1), one deduces the
commutation relations of the Lie algebra (; of G,
Denoting by J,;, K;, P, (j =1,2,3) the rotation, Galilean
boosts, space translation generators respectively and
by H the time-translation one, the nonzero CR are

s, ] =tegdy, Iy, Kpl =iegu Ky,
[J;, Py]=ien Py, [K,, H]=iP,.

The CR of § differ from that of g only by
(K,, P,]=ib,mI=i5;M.

2.1)

For the action of G on (;, the modification to bear in
Eq. (2.2) concerns only the extension part.

(‘J" 6, 7’ ﬁ’ a)
g (p"*‘%dbz +R7'b_ RB c+Ra- (bA7)7 6’ 7', 3’y (!'),

B. Remarkable decompositions of ¢ (and {)

It is interesting to remark that (g ) can be written
as a semidirect sum in several different ways (we
denote by {X,7,..., Z} the Lie algebra a basis of which
is given by X,Y,...,2Z):

(i) g ={P, K, B} D{J} = Levi’s decomposition, **

(i) g = ={p, H} O{J, K}: This decomposition may remind
us the Inonu—ngner14 contraction from the Poincaré
algebra P =7 0/ into the Galilean one, the contraction
in which the Lorentz algebra / is transformed into the
Euclidean algebra E,(3)={J, K}. (The subscripts 7, s, b
mean respectively time, space, and boost.)

(i) ¢ ={P, K, Jt0{H}=¢*'O{H}, ¢’ being the derived
algebra, also called isochronous Galilean algebra.
(iv) ¢ ={K, P}0I{J, H}.

Similar decompositions can be given for the extended
Galilean algebra (. Denoting by //(3) the Heisenberg
algebra {P, K, M}, the last decomposition becomes
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§ =/ (3) O[{J}® {H}). We can note the inclusion
G cSeh=4/@)0l{ste{r, C, DYl cH(3) T S5p(6, R)

Sch denoting the extended Schrédinger algebra, ® al-
ready mentioned in the Introduction, {p(6, R) the sym-
plectic algebra acting on the six-dimensional phase
space,

A11 the CR of S ch will be known by adding to the CR
of g the following nonzero ones:

[c, P]=-iK,, [C,H]=-iD,
[D,K,}=iK; [D,H]=-2iH,
[D,P;]=-iP,, [D,C]=2iC,

C. Ideals and exact sequences

An interesting property of an ideal is that it is ifs
own conjugacy class. We note that

{3,K, P}
{#,K, P}
{K, P}
{H,P}
{p}
In § we find as ideals

{3,x, P, M}
{H,K, P, M}
x,p, M}
{#,P, M}
{p, M}
{m}

The corresponding exact sequences'? are gathered in
Table I. Two subgroups do not appear in these
decompositions

T;(3) — T,(3) OSO(3) —~ SO@),
T, (1)~—T,(1) XT4(3)0SO(3) -~ T ,(3)ISO(3).

This commutative diagram contains only injective and
surjective group homomorphisms,

are ideals of g .

TABLE I, Exact sequences and ideals of G.

‘/__' Tb (3);8?(3/ ‘

@ xT, (3)Dso(§]
m -~ 1,0 xso(a)]
;

[, (3) XT, <3) oT, W |

,\_ f \
T, (3) XT, (1) -.\
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D. Relations between the p.o.s. IT (A4) and II (C) with
C=BUOA

Proposition: Let C be a Lie group, semidirect prod-
uct of two Lie groups A and B, C=BJdA. Then two ele-
ments of the group 4 are conjugate under a transforma-
tion of C if and only if they are conjugate under a trans-
formation of A, As a consequence the p.o. s, II{A) is a
subset of II1(C).

By definition of a semidirect product, the group law
in C=B A can be defined as

b, a) b, a’)=(b*o(@)b’,a-a’)

for any (a,b) and (a’,b') € C, if we denote by : and * the
group laws in A and B respectively, ¢ being a homo-
morphism of A on the group of automorphisms of B, It
is then obvious to remark that, denoting by 0 the
identity element in B, if two elements (0, a) and (0, a’)
are conjugate under the element (b, a;) in C, they are
also conjugate under the element (0, a).

Application: We deduce that

n{J, K}

N{J, H}) are subsets of G
n{Jp of §
n({H})

3. ON THE MAXIMAL SUBALGEBRAS OF A LIE
ALGEBRA. APPLICATIONS: SONS AND GRANDSONS
OF G AND G

A. Maximal subalgebras of a real Lie algebra

Theorvem 3.1: Let 4 be a real Lie algebra, a Levi’s
decomposition of which being 4 =2 3/, where R is the
radical of 4 and / a Levi’s factor. Then each maximal
subalgebra f3 of 4 can be written, up to a conjugation,
either as =R O/ 5 where / 5 is some maximal sub-
algebra of /, or as =R 50/, where R 5 is an ideal of
A, maximal as subideal of {. It follows that every
maximal subalgebra g3 of 4 is symmorphic,

The proof is given in Appendix A. In fact, this the-
orem generalizes several properties proved in Ref, 1.

Let us recall here some definitions:

—A is said a maximal subalgebra of 4 iff 8 is a
proper subalgebra of 4 (A g /) such that there does
not exist any subalgebra ( of 4 with A g C E A.

—The ideal R 5 of 4 is said maximal as subideal of
R iff there does not exist R, ideal of 4 such that: R 5
GR1GR
FN1LENR

—Finally any subalgebra A of 4 can be written (as
vector space):

B=Ls+Ms+R s
with L, =B8n L and R,=BNR and /M, denoting a com-

plementary subspace of L, +R, in53:
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meMp=mm=l'+7, U'el, &/,
T’ER7 Q/RB:

I, 7 nonzero.

m#+0

Then A is said symmorphic iff ) 5=0, or if A is con-
jugate to A’ such that # g =0,

B. Sons and grandsons of ¢ (and ()

By using the previous theorem, it is easy to deduce
the maximal subalgebras (sons) and the maximal sub-
algebras of all the maximal subalgebras (grandsons) of
G, except those of the solvable one {K,P,H,J,}, which
need the use of Theorem 3, 5 of Ref, 1,

Sons and grandsons of g~ can be deduced by the same
way, or by using techniques proposed in Sec. 5. Practi-
cally, the table of sons and grandsons of ¢ can be ob-
tained by adding the generator M of the extension to
each subalgebra of Table II and also by drawing two new
boxes corresponding to subalgebras of Ar(3)®R:

Ar(3) ®R:

TE XE @) ||{I,P,H+6M} 6= 0

ek

{3,P,H,0M} \\
W\

\

\

It may be noticed that the maximal algebras
{K,P,H,J.}in G and {K,P, M, H,J,} in § are solvable
and contain all the solvable subalgebras of g and ?
respectively. This last property is a direct consequence
of the Borel—Morozov theorem for semisimple complex
Lie algebras, (Indeed, let us recall that the Borel—
Morozov theorem-—valid for semisimple complex Lie
algebras—has been easily extended in Sec. VI of Ref. 1
to the case of an inhomogeneous Lie algebra 7 O/,
with 7 Abelian and / isomorphic to a complex semi-
simple Lie algebra, We can use the same proof in which
we replace 7 by a solvable algebra R to deduce that in
R O [ exists a subalgebra R 04, A being the Borel
algebra of /, such that any solvable subalgebra of
R O/ is conjugate to a subalgebra of £ O4.)

{3,P,H}

T, (1) xXE,(3)

4. ONE-DIMENSIONAL SUBALGEBRAS OF G AND gN

The classification up to a conjugation of the one-di-
mensional subalgebras of G (g~ ) is only a problem of
cAonjugation between the elerpents of the projective space
g =g/R of § (respectively §’= g~//{ of ). More precise-
ly, one can say that this problem is equivalent to find
the ovbits of G on § (respectively G on g~).

The actions of G on g and of G on g~ have been given
in Sec. 2A.

The one-dimensional subalgebras of g~ are classified
in Table III, An analogous classification for the one-
dimensional subalgebras of (; can be easily deduced by
suppressing, in the above table, the families of sub-~

Paul Sorba 943



TABLE II. Sons and grandsons of G,

dim, 9 8

7 6 5 4
E, 2) XT,(1) xT,(1)
{JJ!P!H}
ArE) [T x506)]
{3,p, u} .4
Es(3) {J,P}
E,(3)
{9, 8}
T, (3) XT, (3)] L SO (2
[T, (3) T, )]0 SOE) VLKD)
G
{9,K, P, H} - [T, (1) T, @) [T, @)
{J,K,P} {H,K’P}

[T, (1) xG2)

{Je, K, K, P, H}
[T, (1) XT, )] 0G 2)
{Jz! PrK’H} ES(Z) *W)
{v., K,P, H}
{9, +vK,, K, K, P, HY, y=0.
{J +aH, K ,P}, w>0.
= {J,,K,,K,, P,K,+ 6H}, 6> 0.
([T, @) xT, @10 W, (1) f
{4, +VK,, K, ,K,,P,K,+5H}, v=0,6>0.

algebras denoted IV and V and by taking away the condi-
tion £ =01in I,

5. RELATIONS BETWEEN THE CONNECTED

SUBGROUPS of G AND OF G

The p. 0. s. H(g~) can be deduced from H(g) without
much difficulty owing to the following remarks.

Let us consider the exact sequence
0% M “ gN s g B 0,
/M being the one-dimensional subalgebra generated by

the extension generator M, Then with each _subalgebra
,L/ Cg can be associated the subalgebra: G(H) =4 cg
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Conversely to each subalgebra /£ C§ can be associated
the subalgebra )

= 9-1(,q)cg~ with /7 D/.

It follows that we have the following~ relation between
subalgebras of g and subalgebras of g :

Subalgebras ofg — — — — — Subalgebras ofg~
H G) A =61 H), Hom.
(ii) /Q subalgebras of ;17
such that K 2/,
dimK =dimf7 - 1.
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TABLE III. One-dimensional subalgebras of G ( g) . General
element: X=a +J+B*K+y P+ 56H+uM.

Representative Characterization by invariants

element

I, @=0 a*f =0, a¢-y=0

6 L —_ -

J,+nH @ T‘(P:r.—— @=arctan n a*f =0 =0
H 0 ¢<n/2 o=n/2 g=0

J,+BK, 5=0

p=arctan 8
J,+BK, +OH
T¢=a°ﬁ/la12 6/1al
J, +YP, @ ¢ $=0 av/lal 5=0
K,+tH OSp<mp =n/2) [61/1P]
=0

K, @ 9=0

K, +vP @ a-=o 9—‘19’\7'/t 6 =arct 5=0
g T Yy @= Te TBT? =arctan y =
P <p<X \ I

£ 00 3 9~2

. 2 3
Jet oM Same characterization (l("/\ﬂ) yrpatl/lel
J,+nH + pM @ as in(D (@NB) y+pa+i gt~ la-y/26
lal®
H+pM
(v? -2u6)/6?
M ® ¢ =p+¥=5=0

It is interesting to note that the problem of determina-
tion of subalgebras of (; of type (ii) is simplified by the
two properties, the proofs of which are straightforward.

Proposition 1:

HC
[#,H]1,
g

ng,{

the only subalgebra of type (ii) to be
considered from 4 =

TABLE IV, Stability groups of the one-dimensional subalge-

bras of G and ¢.

671(Y) is # itself.

Representative  Stability group in G Stability group in 5
element

I (s K, Py, HY {Je Ko P, M HY

Jg +nH {Jes P, HY {V,, ,,H M}

H {3,p,H} {3,2,H,M}

J, +BK, {J,,K,, P} {J,, K, M}

dJ, +BK,+OH {J,, B+ (6/PH,P,) 1{J,,K,+(5/0H,M}
J,+YP, {J,,K,, P,, H} {J,, P, H,M}

K +tH {J,, P, K, + tH} { Py,Kz+§H,M}
K, {v,, K, P} Vi y,M}

K, +vP, {K, P} {K,, K,y Py, Py, M}
p, {J,,K, P, M} {J,. K, y,1> M}
dp+pM {J,, K,y Py M, H}

I +nH+pM { P, H,M}

H+pM {3,P, M, M}

M {3,X,P,H,M}
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Proposttion 2:

Hcg
3JA&BeH s.t. [A,Blz=

the algebra A = 6-1(#/) does not provide any
algebra of type (ii).

Moreover, the problem of classification of subalge-
bras of g up to a conjugation becomes easy owing to the
proposition:

Proposition 3: // and /' nonconjugate in (:
(0)7‘/ g1y and 4’ =
(B) % K and K' conjugate in g with X ¢/ and

K' i, /( and K ’ satisfying (ii).

= "1(//’) nonconjugate in G.

Indeed, let us suppose H and // ’ to be conjugate. Then
there exists e G such that §4/3-1=/7". Setting g=6(%)
we shall obtain: gHg'1 =#{'. By the same way, supposing
the above defined subalgebras K and K’ conjugate, then
the existence of g G such that: zKzs K5t =K' would imply:

gHg™ =H", with g=6(2).

Thus, practically, the problem of conjugation in g’“ has
only to be examined between subalgebras X coming from
a same algebra £/ = 6°1(4), if we know the p. 0. s. n(g).

6. FOUR-, FIVE-, AND SIX-DIMENSIONAL
SUBALGEBRAS IN G.

FIVE-, SIX-, AND SEVEN-DIMENSIONAL
SUBALGEBRAS IN(

The method we choose for the construction of the
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TABLE V. Maximal subalgebras of the seven-dimensional
grandsons of g

dim.

65> 0)

7

6 J,+oH g, +aP, K, K
s Ky P PP ,H
{e > 0) (o =0)

[%)]

7 o J, +VK,, P,H,K,,K:E fy 0)
V- &
6 K, K, J, +v K, J,+ VK, +aH
P,H K, K,,P
=0  =0,a>0)
5
7
6
5
7
6 [T.K VK, +oHR (7, K, K§ J,+BP,
3 K., K, P §|K, +0H, QK K,P,P,
20,650 PPy K,+0H
: 6> 0) B=0,6>0)
5
>0
7 K KB
6 2 J, + YK, +nH
K_,K,P§ | K.K,P
>0 6> 0) y=0 &= 0,n>0).

o

Jz+aH
K,+6H, PR (@>0,6=0)
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“middle” of I1(G), i.e., the connected subgroups of di-
mension six, five, and four, is to continue the “top” of
I1(G) begun in Table II, more precisely to determine
the sons, grandsons, and great-grandsons of the grand-
sons of G. This method is rather systematic and does
not present great difficulty. Moreover, it has the ad-
vantage of exhibiting the relationships between the dif-
ferent subgroups (Tables V and VI),

By using then the properties mentioned in Sec. 5, the
classification of the connected subgroups of G of dimen-
sion five, six, and seven is given in the last part of this
section,

A. Six-dimensional subalgebras in ¢

Considering Table V we see that there exist three six-
dimensional subgroups, namely the two Euclidean ones
E,(3) and E,(3) generated respectively by {J, P} and
{J, K} and the group E(2) X W(1) generated by
{J, K., P, H}, which are grandsons of G,

We can also note that the other six-dimensional con-
nected subgroups have to be found among the maximal
subgroups of seven-dimensional grandsons of G—each
of them being seven-dimensional and son of the eight-
dimensional group R? OG(2) generated by {J,, K, P, H.

The maximal subgroups of each of these seven groups
are given in Table V.

Let us list below the nonconjugate algebras (or
families of algebras) of dimension six, taking care to
gather the isomorphic ones:

(i) Euclidean algebras:
E,(3) generated by {J,P},
E,(3) generated by {J,K}.
(ii) Abelian algebra:
R generated by {K,P}.
(iii) The (isomorphic) algebras:
K., Ky, P, HY,
generated by 1y x K, +5H,P} (5>0).
(iv) The (isomorphic) algebras generated by
{J2+ VK Ky Ky, PY (v 20),
{J, K,y K,y P,
Yo P,y Py K},
{J,+aP,, P, P, K} (a+0).
{(v) The (isomorphic) algebras generated by
Ve By Koy Ky Py P,
{J,+aP, H K, K, P, P}l (a%0),
{J, K,+6H,K, K, P, P} (6>0),
{J,+BP,, K, +6H,K K, P, P} (#0,5>0).
(vi) The (isomorphic) algebras generated by
{J.+aH, K, K, P} (a>0),
{J,+vK,+aH, K Ky, P} (y#0,a>0).
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TABLE VI. Maximal subalgebras of the six-dimensional 6
algebras. In this table the maximal subalgebras of the Euclid-
ean algebras, given in Table BI are not considered.

J,+oH, K K,

N 5 z ’ iy tty >
dim. P, (@>0
6
K, +8P, K, 4
5 % B 2z %3ty
K, K, P, P, P
@>0)
6
o Ky Jy+taP, K K, +pH 3> 0)
5 Jz+aPz (ozz 0) Px’Py’H Px’Py y’Px’Pa’
K, K,,P,,P, @0
4
6
5
6
4
' f K, +uP, K, —uP
w>0 (a=0) (@=0,u>0) 6
6
5
5 J,+vK, i(
[y =0)
Kx,Ky,Px,Py
4
4 J,+VK,,P,
#z0,u>
K, +uPy, K —uP, Y= 0,1>0)
6
6 5 |Jdpy K, K, J,+ YK, +6H
PP, K, K, P,P,
6>0) ty=0,6>0)
J, + YK, J,+aP
5 (y=0 2 £ 2 z K,P._,P
nyKva:nPy Kx’KythPy e 4 J"K‘+6H (6>0)
(a=0) 2
4 [ +aP, KN [T raP J.+aP., K 6 [ +pP,,P,, P
(a=0) % 2z g z [ 44 Z 22z z 2t xrty =0,.6>0
PP, K, +uP,, K, —uP, K,+0H,K, K, Gz 0.6>0)
(@=0) l@=0,u>0)
5| J,+BP, K,+6H,Kx,1g| J,+ YK, +6H
ty=0,6>0)
6 JS’KI’Ky K., K, P.,P, P,P, K., Ky!Px’Py s
PP H B= 0 ©6>0)
5 K. K, o0 Kpo K, J,+aH 4 J,+BP,,P,,P, -
0
Py, Py, H PP, | |Kok, P, P70 K, +6H 6= 0)
4 J,H
PP, 6 Ko Ko Py H R
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(vii) The algebra of E(2)xW(1) generated by
. K., P, HY,

B. Five-dimensional subalgebras of §

The five-dimensional subgroups will be obtained by
considering the five-dimensional maximal subgroups
of the seven-dimensional groups of II(G) (see Table V)
and the maximal subgroups of the six-dimensional
groups which are given in Table VI.

Let us remark that the Euclidean group E (3) and
E,(3) do not admit five-dimensional subgroups. We may
also mention that the maximal subalgebras of the Abelian
algebra {K, P}—which are obviously all five-dimension-
al—will be found without difficulty by noting that such a
subalgebra admits a basis with either two P-pure gen-
erators or three P-pure generators.

Finally, we have obtained 21 nonconjugate five-dimen-
sional subalgebras (or families of subalgebras) which
we have classified below into seven sets of noniso-
morphic algebras:

(i) The Abelian algebras generated by
{K, P, Py},
{K,, K,, P},
{K,+BP, K, K, P, P} (8>0).
(ii) The (isomorphic) algebras generated by
{J., P, H},
e P KL,
{7, K P,
{J,,K,+6H,P} (5>0),
{d,, K, +BP,, Ky~ P, K,, P.} (>0).
(iii) The (isomorphic) algebras generated by
{K., P, H},
{K,,P,K,+aH} (a>0).
(iv) The (isomorphic) algebras generated by
{H, K, K, P,y P},
{H,K,+aP, K, P, P} (a>0),
{K,+6H,K, K, P, P} (5>0).
{(v) The (isomorphic) algebras generated by
{Vo, Ksy Ky Pry Py
{J.+ P, K, Ky, P, P} (a#0),
{J,+vK, K, Ky, P, Pyt (y#0).
(vi) The (isomorphic) algebras generated by
{J,+aH,K K, P,P} (a>0),
{Jo+yK, +aH,K K, PP} (y#0,a>0).
(vii) The (isomorphic) algebras generated by
{o+ 7K, H,PE (#0),
{J,+eH,K,, P} (a>0),
{J,+aH,K,+BH,P} (a%0,8>0).
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C. Four-dimensional subalgebras in g

The classification of the four dimensional subalgebras
of g appears more fastidious than those given in the two
previous paragraphs. This is due particularly to the
large number of four-dimensional algebras contained in
the Abelian one {K, P}, Note that each four-dimensional
subalgebras of {K, P} contains either one or two or three
independent P-pure generators: We shall use this re-
mark to classify these subalgebras.

Finally the four-dimensional subgroups of G can be
gathered into four sets of nonisomorphic ones:

(i) SO(B) xR type: group generated by {J, H}.
(ii) E(2) XR type: groups generated by
{Jzny+ wPy, Ky_' uPy, Kz} (> 0) \{Jz’ P},
{Jz;Kx+ L.pr,Ky— H'Px’ Pz} (“' > 0)
{Jz’Kx+ uPy,Ky_ qu;Kz+ apz} (O‘#:O, o> 0)7
{JZ’ KX’ K!” pz}
{J.» KL,
T+ 7K, Pp (y#0) {Jes Pes Py Kb
{Jz + YKy Ky, Ky, Pz} (y+0) {Jza P, Py, H};
{Jz“"?’Kz’Kx"'Mpry— “Px,pz} (y#0, u>0)
{JZ+ aPZ, KX’ Kﬁ), KZ+BPE} (a7 B¢ 0)
Ky Ky Ko+ 0P} (a#0)
{J,, Py, Py, K+ 8HY (6> 0),
{Jz+ aszKx+“Py9Ky- U'Px’Kz} (O‘¢07 K> 0)
{[Jo+ QP K, + uPy Ky uP, K, +BP,} (0,0, p>0)
{J,+aP,, K} (a+0)
{JZ+ asz H’ Px; Py} (a:,ﬁ 0)’

{Je+aH, P} {Je+ aP K,y Py, Py} (0 #0)
{JZ+ VKZ+ aH’ P} {Jz+ QPZ’ K2+6H, Px’ Pv} (a # 0’ 5 > 0)'

(iiil) W(1)XR type: groups generated by
{J, K, H,P,}, {K,K,+6H, P, P,+pP} (8>0, 6>0)
K, H P, P}, {K.+aP, H,P, P} (a>0)
{K,, K,+0H,P,, P} (6>0),
{K,+aP, K,+6H,P,, Py (a>0, 6>0)
{K,+8H,K,, P, P;} (6>0),
{K,+aP, K,+8H,P,,P,} (a>0, 6>0),
{K.+aP,,K,+bH, P, P +BP,} (a#0, >0, 5>0).
(iv) R* type: groups generated by
{H,P}, (K, Pd,
{Kx + Py K+ P, K, +yPy+ 8P, Px}
(x>0, B>0,v,5+#0),
{K,, K,+BP,,K,+yP,+0P, P} (>0, v,6%0),
{K,+aPy, Ky K;+yPy+8P; Pyt (a>0, y>0,5#0),
(K, K, K,+yP,+6P,, P,} (y>0, 5+0),
{Ke, Ky+ 8Py, K, +vPy, Py (8>0, v#0),
{K,, aP, K, K., P,y (a>0),
(K, K, K,+5P,, P} (6+0),
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TABLE VII. Two-dimensional subalgebras of .
SO(2) XR algebras

{K,, P, +BP,} (8>0)
{K op s Pyt BP,+YP,} (6>0, §>0, v+ 0)
{K +6P ,P +7P,} (5>0 v>0)
{K +6P,, P, +7Pz} ©6>0, y=0)
N{K +0P,, x+/3Py} (ﬁ>0 5>0)
~{K +6PI,P} 6>0)
{K +8P, P} (6>0)
~{K +pH, Pj» (p>0)
{K+pH 4 (p>0)
{K +pH,P_+vP,} (p>0, y>0)
1K, K+ap +BP,+YP,} (@=0, >0, v>0)
{,, ,+BP “eyP)} (850, v>0)
{K,, K, +aP, +7P,} =0, vy>0)
{z, K +aP +BP} (@=0, §>0)
Kz,Kx+aP} (@™ 0)
K, K, +BP,} (B>0)
{ K+'yP} tv>0)
if y=5: ~){K +0P,, K +aP +BP +YP,} 6>0, a=0, $>0, Y*0)
if v= 6'~){K +8P, K _+pP, +yPs} 6>06, >0, wo)
G y=61 ~){K +6Px, +aP +')/P} 6>0, a=0, y>0)
{K +0P., K.+ 0P +3p} (6>0, a=0, 8>0)

xs
G v=6: ~{K LOPL K. 4YPY (630, v=0)
(6>0, B>0)

{K.+5P,, K.+ 3P,

N{J +6P,, f (6¢0)
{J +6P K} ©#0)
{J +5P,,H+pK} ©=0, p>0)
{J, +6K,, P,) (6= 0)

N{J+5sz) >0
{J,+pH+6K,,P,} {p>0, 6=0)

2The subalgebras preceded by the sign ~ are subalgebras of
G (See Table VII),

TABLE VIII, Two-dimensional subalgebras of G,

They can be gathered into three parts:

(i) the subalgebras obtained by adding the generator M to each
one-dimensional subalgebra ofg (see Table IID);

(i) the subalgebras preceded by the sign ~ in the Table VII of

the two-dimensional subalgebras of

(iii) The subalgebras:

{P H+pM} (8=0)
{J,+8P H+BM} 6=0, 3=0)
{J +ap +BM,H (6% 0, 8>0)

{J,+6P,+pM, H+7M} 6=0, >0, vy=0)
{J +5H+BM,P,} (6>0, §=0)

{J,+8M,K,} (8>0)

{J +8M,P,) (B>0)

{J +aM,H z} (@>0)

A JH+ M} (8= 0)

{J, raM H+BM} (@>0, B=0)
{J +oM,K,+ M} (@>0, B=0)
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{K., Kyy Poy Py}, {Ess Ky, Py, Poly

{Ker Kys Py Py+7P,} (>0},

{K,+vPs, Ky, Py, Pt (v>0),

{K,+aPy, K, P,Pjg (a>0),

{K +aPy, K, P,P,+yP} (a>0, v>0),
{Ky P,

{B +aPy K, K, +08P,, P,} (a>0, 8+#0).

D. Seven-, six-, and five-dimensional subalgebras in g~

As has been discussed in Sec. 5, we shall classify
the subalgebras of a given dimension into two families:
an algebra of the first family possessing M as a gen-
erator, and an algebra of the second family being such
that M is not a generator of the algebra. Let us add
that algebras of the first type are readily obtained by
adding the generator M to each subalgebra o£ g —and
imposing then the commutation relations of G. As for
algebras of the second type, it has been shown that each
such algebra appears as a (maximal) subalgebra of the
algebra obtained by adding the generator M to the con-
sidered one, which induces a method of determination
of these algebras,

There follows the classification below,
1. Seven-dimensional subalgebras of gN

(i) The subalgebras containing M as a generator: see
the classification of the six-dimensional subalgebras of

G.
(ii) The subalgebras—whose corresponding groups
are isomorphic to E(3) X R—generated by

{3,9,H}, {J,P,H+0M} (5%0).

2. Six-dimensional subalgebras of §

(i) The subalgebras containing M as a generator: see
the classification of the five-dimensional subalgebras

of (.
(ii) The subalgebras—whose corresponding groups
are isumorphic to E(3)—generated by

{3,x}, {J,P}L

3. Five-dimensional subalgebras of g~

(i) The subalgebras containing M as a generator: see
the classification of the four-dimensional subalgebras

of g .
(ii) The subalgebras—whose corresponding groups
are isomorphic to E(2) X RZ—generated by

{J,,p,H}, {J,+aM,P,H} (a>0),
{J,, P, H+8M} (8+0),
{J,+ H,P,H+ M} (A>0, p#0).
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TABLE IX. Three-dimensional subalgebras of the ideal {K, P} in( .

G-) ~ {Px,PyQPz}
{K, P P}
xX? ¥ ooz
{K,, P, P+ 0P} (@>0)
EK +6P p P} 6>0
{K +ozPy K,P (a>0)
K, +BP, K, Pt (8>0)
11( K+6P sP.p 6>0)
K+aPy+B K, P}(a>0 8>0)
{K, +aP, K+6P }(oz>0 5> 0)
{K. + P K+ 6P, P} (6>0,6>0)
}K +apP, +ppz,K +6P,,P,} (@>0,3>0,6%0)
{k, +beK Pl (>0
~ {K K,+dP,,P,} (d=0)
(ife=bp ~) {K +bP K+cP ,B 0>0,c%0)
{K K+cP +dP P}(c>o d=0)
(ifc=b ~) {K +bP K +cP +dP,,P,} (>0,c20,d= 0)
{K K, +ozP,} (@> 0)
{K +aP K P,+aP,} @>0,a>0)
{K,+bP,,K P +aP} (b=0,a>0).
{K,, K,+dP,, P +aP}(d>0 a>0)
{K+aP +pP P+0£P}(a>0 b=0,0>0)
{K +an K, +dP ,P +01P} {@a>0,d=0,a>0)
{K +bP,, K +dP p +ozP} (®=0,d>0,a>0)
{K +aP o K +dP ,P.+aP,} @>0,b% 0,d= 0,a>0)

ii) {K taP,K +aP +bP,+cP,, K, +dP +jP, +kP} the values of @, a, b, c, d, j, k satisfying one of the following lines®—more
premsely each lme corresponds to a famlly of nonconjugate subalgebras and two subalgebras belonging to two different lines
being nonconjugate, ©

a a b c d Jj k «a a b c a j k
@,b,c)= (d,j,k)d > > > 0 > 0
> 0 > > 0 > 0
> 0 > > 0 > 0
> 0 > > 0 > 0
> > 0 > 0 0 >
> > 0 > 0 > 0
> > 0 > ] > 0 a,b)= (j,k)
> 0 0 > > > 0 0
> 0 0 > > > 0 0
b,c) = (G,k) > 0 > 0 > 0 0 > 0
> 0 > 0 > 0 0 > 0
> 0 0 > 0 0 0 0 > 0
> 0 > 0 0 0 0 0 > > 0
> 0 0 0 > 0 0 0 > > 0
> 0 > 0 0 0 0 0 0 >
> 0 > 0 0 0 0 0 > 0
> 0 0 > 0 0 0 0 0 > > 0
0 0 > 0 0 0 >
0 > > 0 > 0 0 > 0
0 0 > > 0 > 0 0 > 0
0 > 0 > 0 > 0 0 0 > 0
0 > 0 > 0 > 0 0 0 0
0 0 0 > > 0 0 0 > ]
0 0 0 > > 0 0 0 0 0 ®) = ()
0 > 0 0 > 0 0 0 > > 0 0
b,c) = (k) 0 0 > 0 0 0 0 > 0 0
a,c) = (d, k) 0o > 0 > 0 0 > 0 0 0 0 0
0 0 > > 0 0 0 0 0 0 0
0 0 > > 0 0 > 0 0 0 0
0 > 0 > 0 0 0 0 0 0 0 0
0 > 0 > 0
aThe subalgebras preceded by the sign ~ are subalgebras ofg d=0, j=c.
(see Table XI. 5). 4By (a b,c)= (d,j,k)—or (a,b) = (],k)—-we mean that, in the
bInside a box, the sighs >, 0 mean respectively positive and three- dlmensmnal Euclidean space R} the vector (a,b,c) is
equal to 0. When a box is empty, the corresponding parame- not parallel to the vector (d,j,k)—or in the two-dimensional
ter takes all the values, except 0. Euclidean space R?, the vector (a,d) is not parallel to the
cNote that a subalgebra of the type (ii) belongs tog ifa=q, vector {d,j).
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TABLE X, Three-dimensonal subalgebras in g .
~2 Jx,J,,J,}

(i) SO(3) algebra:

(i) Euclidean algebras E(2):
~ }J,,P,,Py}

~

J, 2y
{Jx{;{x"""}fzfv;ﬁp(x} 0‘:))) 0)
~1{d, +Y [y =
~ AT VR K, Kﬁ = 0)
{I,+ VK, , K, +pP, K ~ P} @£>0,7=0)
~{J +a P, PP} (a=0)
~{J +aP, K K} (@=0)
{J,+a P K, +pP K, —uP} u>0,a+ 0)
~{J,+BH,P,,P) (38> 0)
~{J,+ VK, +BH,P,,P.} (y=0,5>0)
~{J+ VK, +aP,, K, K} (y=0,0%0)
{J,+VYK,+QP, K +WP K ~pP} {y=0,0=0,p>0)

(ii) Weyl algebras W(1):

{H,K,,P}
{H,K,+ap,,P§ (o > 0)
{H+pEK,, K,,p:)} (8> 0)
{H+pK,, K, +aP,P,} (8>0,0=0)
{H+pBK, K. +0K,+0P, P, +pP,} (8>0,p>0,0%0)
{H+BK, K, +pK,+QP, P, +pP,} (8>0,p>0,a=0)
{H+pK,, K, +pK, +aP, +bP P +pP} (8>0,p>0,a= 0,b= 0)
{H,K +vJ, P} ty=0)
{H+yd K, P} ty>0)
{H+vJ,,K,+6H,P,} (y>0,6=0)
{H+VK,, K, +8J,,P,} (y>0,6=0)
{H +vdJ,, J,+6K,, P,} (y>0,6=0).

{iv) Abelian algebras

SO @) xR? algebras: {J,. K., P,}
N{JgaH)Pzi

{d,, K, +0H, P} (6>0)
R?® algebras: ~{H,P,P}

all three-dimensional subalge-
bras of {K, P} (see Table XI),

2The subalgebras preceded by the sign ~ are subalgebras ofg
(see Table XI.)

7. TWO- AND THREE-DIMENSIONAL SUBALGEBRAS
IN. TWO-, THREE-, AND FOUR-DIMENSIONAL
SUBALGEBRAS IN ¢

A. Construction of the subalgebras

Here is a rapid outline about the determination of the
low dimensional subalgebras of g .

So let A and B generate a two-dimensional subalgebra
of g . Then considering successively for A each ele-
ment written in the three first boxes of Table III, we
shall have to associated with it the elements B of § such
that A, B form a basis of a two-dimensional Lie algebra
not conjugate under G to an algebra already obtained.
Note that B has to be taken only in the solvable part R
of g since the simple part / =SO(3) does not contain
two-dimensional subalgebras.

Consider now the three-dimensional subalgebras of
G. From Theorem 3. 1, one deduces that all these
algebras are solvable except the simple part / *SO(3).
These solvable algebras will be studied following their
type 8=/ g+R 5 (With dim/ g=1), M z+R 5 (with dim/} 5
=1) and X g.
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Let us add a remark about the two- and three-dimen-
sional subalgebras of the Abelian ideal {K, P}. Indeed
the classification of these algebras is equivalent to the
study of the orbits of the group SO(3) XR generate by
{J, H} in the sets of subspaces of {K, P} of dimension
two and three, respectively.

Concerning the subalgebras of g~ , we consider the
techniques proposed in Sec. 5 and already used in Sec.
6.

Finally the classification up to an isomorphy of these
algebras leads to

Proposition 7, 1: All two-dimensional subalgebras of
and of (; are Abelian, Any three-dimensional sub-
algebras of ¢ and of g is either simple and of the rota-

tion type SO(3), or solvable, In this last case, it is
either Abelian, or of the Euclidean type E(2), or of the
Weyl type W(l). (See, for example, Ref. 1 for the list
of the nonisomorphic three-dimensional real Lie
algebras.)

B. Tables of the subalgebras

The two-dimensional subalgebras of G and §~ are
gathered in Tables VII and VI, respectively.

A special table (Table IX) is devoted to the three-
dimensional subalgebras of (; which are subalgebras of
the ideal {K, P}. Tables X and XI give the three-dimen-
sional subalgebras of g and (, respectively. Finally,
the four-dimensional subalgebras of g are given in
Table XII,
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TABLE XI. Three-dimensional subalgebras of (.

They can be gathered into three parts:

() the subalgebras obtained by adding the generator M to
each two~dimensional subalgebra of g (see Table VII);

(ii) the subalgebras preceded by the sign ~ in the Tables IX
and X of the three-dimensional subalgebras of g;

(iii) the subalgebras: {Jz+aM, p, P,} (@ >0)
{L+oM, K, K} (@>0)
{Jz+ﬁH+'yM,P1,Py} B>0,v=0)
J +aM,H,P} (a>0)
JZ,H+ﬁM,P:} B=0)
{J, + oM, H+BM,P,} (@> 0,5 0)
{H+aM,P,P} (a=0)

Paul Sorba 951



TABLE XII. Four-dimensional subalgebras of §.

They can be gathered into two parts:

(i) the subalgebras obtained by adding the generator M to each three-dimensional subalgebras of G (see Tables IX and X).

(i) the subalgebras:

{7, H} {isomorphic to SO(3) XR)
{3, H+6M} (5 0)

{J, +aH,P} (@>0) [isomorphic to E(2) xR]:
{J, +aH+pM,P} (@> 0,8 0)

{J,,P}

{J,+aM, P} (a>0)

{JK K, P}

{J +aM,K,,K S P

{J

{J +aM, K} (@>0)

{J,,P,,P K +6H} ©6>0)

{J,+aM, P, p K, +6H} (@>0,6+0)
{J +aP, H P P‘} (=0

{J +aP +ﬁM H,P Pl @=0,8>0)

9;.:,

{H,P} (isomorphic to R %)
{H+aM,P} (@ =0)

{J,+oP,+pM,H+YM, PP} (@=0,8>0,y=0)
{J +aP H+BM P, P} (@=0,B8=0)

{J +ﬂM, s K, K+aP}(B>0 ax0)

{J K, K, K+aP£} (@ = 0)

{J +aM p,, P, H+aM} (@>0,8% 0)

{Jps Py Py, H+ M} (B 0)

g +aM P,, P,,H} {@>0)

{J +aMP

,K,} (o> 0)
{J P,,P,

APPENDIX A: PROOF OF THEOREM 3.1

Let 8=/ g+M g +R 5 2 maximal subalgebra of 4. Two
cases can be considered concerning the ideal 2 4.

()R 5=R; then =R +/ g=R O/ pand so / z must be
maximal in / if 4 is maximal in 4.

(ii) R 5 G R ; considering the vector space /| 5, let us
denote by / 5 and R ; the spaces spanned by the elements
I’ and ¥’ respectively.

First one shows that / g+/ 5=/ . Indeed assuming that
the subalgebra / z+/ 5#/, the subalgebra C =R +/ g
+/ 5 would be a proper subalgebra and would include £:

BGCGA.
It is then possible to prove that / 5 +/45 is a subal-

gebra of 4 and also that it is exactly /f wptoa
conjugation,

Now if R =0, [/ 5+Mp is an algebra. But if £ 5#0,
we can consider the quotient 0=4/R 5. 0 is a Lie
algebra since & 5 is an ideal. Moreoyer, ¢ is semi-
simple; indeed, the existence of an Abelian nonzero
ideal in Q would induce the existence of an Abelian
nonzero ideal in / .

Since all the extensions of a semisimple Lie algebra
are trivial, ' we are insured that / 5+ 5 forms an
algebra and that 8 can be written as the semidirect (or
direct) sum A =R z0(/ g +/M ). The same type of argu-
ments showing the semisimplicity of Q allows to deduce
that / 5+ 5 is semisimple. Thus 4 can be written

A=RO(Ls+Mp)
with / 5+ 5 playing the role of a Levi’s factor.

All of Levi’s factors being conjugate in a real Lie
algebra (Malcev’s theorem), [ 5+/M 5 is / or conjugate
to /. It follows that 8 =R g0/ or is conjugate to 3,
=R DBL.

Finally the maximality of 4, in 4 imposes the sub-
algebra R, of R to be maximal as a subalgebra of R in-
variant under /. Thus R, is an ideal of 4 maximal as
subideal of X.
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APPENDIX B; THE EUCLIDEAN GROUPS £(3).
IN G (AND G)

One finds in G two three-dimensional Eunclidean
groups E(3) which are not conjugate: the group generat-
ed by {J, K} which will be denoted by E,(3) and the group
generated by {J, P} denoted by E (3).

We know from Sec. IID that II1(E,(3)) is exactly a sub-
set of I(G). It can also proved that I1(E,(3)) is a subset
of I1(G).

Indeed let us consider g=(0,¢,0,R), g'=(0,¢’,0,R’)
and g, = (dy, ¢y, by, Ry) such that

£088 =8’ (B1)
One can compute
R RR;'),

20883 = (0, ¢y + Rye ~ RyRRjcq — dy(by —

b, - R,RR;'b, R\RR;')

TABLE BIL. 2 The p.o.s. 7(E(3)}

The p.o.s. T(E(3)).

aThis table is for E(3) considered as subgroup of G as well
as subgroup of G,

Paul Sorba 952



Using Eq. (B1), we get
¢’ =c¢y +Rye - RyRRG'e,, R’=R,RR;..

So, it follows that g and g’ are also conjugate under
&1=(0,¢y,0,Ry) € E,(3).

By the same arguments one deduces that I1(E,(3)) and
II(E,(3)) are subsets of 1(G).

Although the p.o.s. II(E(3)) had already been studied
in Ref. 1, we rapidly draw its form in Table BI,
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Wave operators for long-range hard-core potentials

A. W. Sdenz and W. W. Zachary
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In a previous paper, we have proposed a definition of wave operators for hard-core potentials of long range
from the standpoint of time-dependent single-channel quantum scattering theory. In the present note, we

prove the existence of these operators for a large class of such potentials. The proof involves a combination
of methods previously used to establich the existence of wave operators for short-range hard-core potentials

and long-range potentials without hard cores.

1. INTRODUCTION

There have been a number of investigations of the
existence of wave operators appropriate to short-range
hard-core potentials and to long-range potentials without
hard cores within the framework of time-dependent
single-channel quantum scattering theory.! We have
proposed® a definition of wave operators for long-range
hard-core potentials within this framework. Roughly
speaking, it is obtained from the pertinent definition for
short-range potentials with hard cores by replacing
the unitary operator describing the free evolution of the
scattering system by a “renormalized” one familiar in
the time-dependent approach to scattering by long-range
potentials without such cores.

The purpose of the present note is to prove the exis-
tence of such wave operators for a large class of hard-
core potentials of long range. The proof, given in Sec.
2, involves a combination of the methods of Ikebe® for
short-range hard-core potentials and of Alsholm and
Kato* and Alsholm® for long-range potentials with no
hard cores.® Appendices A and B contain theorems on
self-adjoint extensions of relevant operators.

Our existence result allows a rigorous and straight-
forward extension of an earlier approach’ for determin-
ing potentials whose single-channel S operators are the
same as that of a given potential of a suitable class to
the case when this class is that of the long-range hard-
core potentials defined in Sec. 2. This extension is
important for constructing phase-equivalent proton—
proton potentials.

2. WAVE OPERATORS FOR LONG-RANGE
POTENTIALS WITH HARD CORES

We consider an arbitrary fixed integer n=> 2, unless
an explicit statement to the contrary is made. Let T be
an open subset of R" such that 7=R"\I‘, the hard core,
is compact.

In this section, we shall be concerned with a potential
V which is a fixed multiplication operator in L*T') by a
real-valued function V(+) having the following
properties:

1. Let m denote a fixed positive integer and let there
exist a decomposition

V() =V () + V. () (1)

of V(+) into short-range and long-range parts, V()
and V,(+) being real-valued functions on I" such that
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(1+ x| v g(+)e L) + L=(T)

holds for some ¢> 0 and that all the partial derivatives
D*V, (x) of order p=1,... N2[m+a,]+m+1 exist
on I and satisfy

| DV, (x)| < const (1+ |x])*=2 (2)

thereon, where the o, are positive constants fulfilling
the conditions (L) stated in Theorem 3, Ref. 5, and
where [¢] is the largest integer not exceeding a given
real q.

The latter conditions are too complicated to state
here, and we must refer the interested reader to Ref.
5. They are satisfied, in particular, if (2) holds in the
stated sense with @, =+ *+=a,, =@, where (m+1)" <«
<1,

The requirements I on V,(-) entail that the following

limit exists and is finite®:
Vo= lim V (x).
Ix!l ew

From I and the finiteness of V,, it is clear that V,(+)
€ L=(I'). Therefore, V(*)e L*T)+ L=(I'), whence
Theorem A of Appendix A entails that the operator - A
+ V on C7(I')® has a self-adjoint extension, A being the
Laplacian operator in R". In this section, we denote by
H a fixed, but arbitrary, self-adjoint extension of the
penultimate operator. For the existence purposes of this
paper, any such self-adjoint extension is as good as
any other. However, it is an important fact physically
that for n=3, at least under certain additional hypothe-
ses on I' (which will not be made in the present section),
there exists a self-adjoint extension H’ of — A+ V on
C3(T) with the following property. The functions in the
domain of H’ satisfy the boundary condition usually as-
sociated with a hard core, namely, they are equivalent
to continuous functions f on T such that flx)~0as x
tends to any given point of the boundary of I'. The exis-
tence of H’ follows from Theorem B of Appendix B.

Without loss of generality, it will be assumed hence-
forth in the text that V() is the restriction to I' of a
real-valued function t—/L( *) on R" having the properties
ascribed to V,(+) in I, but with I replaced by R". In
fact, if there exists a decomposition (1) of the type
specified in I, then there also exists a decomposition
V(+)=V4(*)+ V¢ (+), where V4(-) and V] () satisfy the
respective conditions imposed on the corresponding un-
primed quantities in I and, additionally, Vi(+) is the re-
striction of such a ¥,(+).°
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By an appropriate shift of the zero of the energy
scale, we will set the constant V, pertaining to the
present V, (<) equal to zero from now on. It will also
prove convenient to introduce an auxiliary multiplication
operator V in L%(R") by a real-valued function V()
€ L% (R") such that

loc

Vir)=V¢x)+ V,(x) onR", (3)

where V¢(°) is a real-valued extension of Vs( ) to R"
Therefore, I holds if we replace V(-), V), V (+)
and T by V(°), Vg(°), P (), and R", 'respectwely
This will allow us to use the pertinent results of Ref.

5 in this paper.
We define the wave operators Q{™: L%R") —~ L*(T) for

long-range potentials with hard cores by
Qfm) = s-lim V¥ PU{m (4)

L ko

at each —«© < (< when the limits exist.' The operator

P:L3R")—~ L3(T) is specified by

Pfix)=f(x) on T
for each fe L*(R") and U{™: L*(R") — L*(R") is the unitary
operator

Ui = exp(-itH, - iX{™).

Here X:"" is an operator of multiplication in the mo-
mentum-space representation of L%(R") by the function
X{m(-) defined recursively by

Xt(O)(k): 0
(5)
X9 = [ FVL(sk+ VX,V (R))ds.

The last definition in (5) can be readily seen to be
effective for p=1, ... ,m.

it is natural to require that

0 onT. (31

On physical grounds,

I-/L(x)=0 on R* when V,(x)=

Indeed, if (3’) and the remaining relevant hypotheses

of the paper hold, then Q{™ reduce to the corresponding
operators for short-range potentials with hard cores
when V, (x)=0. The condition (3’) is obviously compati-
ble with the previous ones. If one replaces I' and V(<)
by R" and V,(+), respectively, then £{™ agree with the
corresponding operators for long-range potentials ad-
vocated by many authors,!® provided that V, is suitably
reinterpreted.

Plainly, the decomposition (1) is not unique and hence
neither are Qi’"). For the case of long-range potentials,
the nonuniqueness of the corresponding wave operators
has been discussed by a number of authors.!? A similar
situation arises in the case under consideration, 1®

Our main result is the theorem which we proceed to
state. This theorem is true independently of whether
(3’) is satisfied.

Theorem 1: The operators Q™ exist, are isometric
on L3*(R"), and have the intertwining properties

exp(itH)Q™ = Q™ exp(itH,). (6)
Proof: To prove the existence of Q{™, we write
VEPUIm =2+ 0
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and show that the strong limits as # ~x « of the
operators

le) — V’;‘P(I—n)Uﬁ"",
8y = vt Puie

exist. Here I is the unit operator in L%(R") and 7 is a
multiplication operator in this space by a function 7(-)
€ C*(R™ such that suppn(+ )T, that 0<n(x)<1, and
that n(x)=1 identically outside of some compact subset
of R" containing 7.

Now,

| €U f]| 12y < comst |2]1
for all 6>0, [¢| =1, fe §,

where ¢ is a multiplication operator in L*R") by a func-
tion £( <), for which | ¢(x)| <const (1 + |x})'%a.e. on
Rn for some 8>0, In (7), § is the dense subset of L*R")
consisting of those functions fe LZ(R") having a Fourier
transform fc C2(R") such that supp/ € R"\{0}. From this
result, in combination with the relevant definitions and
elementary arguments, we infer that (7) holds with {U{™
replaced by (" and L?(R" by L*(T). Hence, Q{" tends
strongly to zero on §asi—+w», so that, by umform
boundedness, Q" has these same propertles on the
whole of LZ(R").

(7)

By a standard argument, the existence of s-lim,_,. Q>
will be proved if one shows that, as a function of ¢,

dﬂsz) 1 ) 1 oo
“ Tf Lz(r)EL (=, ~DNLYL, ), iffeS, (8)

where the time derivative is understood here and hence-
forth in the strong sense.

In the remainder of the proof of the existence_of /™,
we_shall assume that the decomposition V()= V()
+ V ( ) considered is such that the additional properties
V ( € C*(R"™ and

dX( m)

“(17 iy gy € L=, —1)N L1, )

z%a&m
if fe S, (9)

both hold. That this assumption entails no loss of gen-
erality should be clear from the following facts.® First,
the existence of a decomposition (3) such that the prop-
erties in the italicized statement immediately after (3)
obtain entails that there is also a decomposition (3) such
that these properties and also those in the penultimate
sentence are present. Second, if the operators (4) cor-
responding to the second decomposition exist, so do
those pertaining to the first decomposition.

To prove (8), we focus our attention on a fixed 2 §
and observe that

ke D(H,), PnU™ne D(H). (10)

The first assertion of (10) should be clear. The second
follows by combining the fact that PnUi™r e §(T') with
Theorem A of Appendix A, Here S(I') is the set of func-
tions on I', each of which is the restriction of a function
fe S(Rrm), such that supp fC T', S(R") being the set of
Schwartz functions of fast decrease on R*. The member-
ship statement in the penultimate sentence is deduced by
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employing, in particular, the infinite differentiability
and support properties of 7(+), the infinite differentia-
bility of X{™(+) [which follows from the validity of (5)
over the pertment ranges, couped with the assumption
that ¥, (+)e C=(R")], that s (R™ is invariant under
Fourier transformation, and that S(R")D S.

Using (10), the definitions of the pertinent operators,
and properties such as the one that dX{™/dt exists and
has domain L%(R"), one concludes that (d2$?’/df)h exists
and is given by

(2)
%Lh_w’% [HPn—Pn(H +g§;—)]U§”"h. 11

Keeping in mind, in particular, that (A2) of Appendix
A holds for f=/PnpUi™k and manipulating (11) by pro-
cedures analogous to ones in Ref. 3, one infers that

(2) (VPn pndX( )U(M)h

A
dt
v 8| p
i=1

h

L)
oh
{m) 2%
( )U‘ ax;

+ ) (A”)Uy")h”z,zmrr)

L2

+ | PanumR L,

L® (r)

- t (m)
(7- 25 v

U(m) on
ax, ox;

where Ay and 971/ dx, are multiplication operators in
L?(R™ by An(+) and an{-)/dx,, respectively, with x, the
ith component of x € R". The significance of the remain-
ing factors should be clear. Since An(+) and an(-)/dx,
are in C3(R™, h and 0h/9x, are in S, and (7), (9), and
(12) hold, (8) follows directly.

L2R™

+22

i=1

(12)

b
L2R™M

Henceforth in this proof, we dispense with the as-
sumptions made in the sentence containing (9).

In order to show that the {™’ are isometric, we
begin by observing that
( (m)
“ thUtM)f”iz(r): Hf“izm")‘ “XrUtmf”L (R™ (13)
at each fe L*(R"), where ¥, is a multiplication operator
in L?(R") by the characteristic function x,(+) of the
hard-core region y.

The second term on the rhs of (13) tends to zero as
t—+ at every fc §, as one deduces with the aid of
(7). Hence, this vanishing property holds for each f
€ L%R"). Together, this result and (13) evidently imply
the desired isometry property,

Finally, the intertwining relations (6) can be estab-
lished by an approach analogous to the corresponding
one in Ref. 5.!° This completes the proof of Theorem 1.

APPENDIX A: SELF-ADJOINT EXTENSIONS FOR n>2
In this appendix, V, V,, and V, are multiplication
operators in L#(T") by the respective real-valued func-
tions V(+), V,(+), and V,(+) on T. The set S(I") men-

tioned below was defined in the third sentence after (10).

Theorem A'": The operator -A +Von Cs(I') has a
self-adjoint extension if V(-)e L% (T). Moreover, let

luc
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V=V, +7,,

Vi(+)e L¥(T), V,(*) e L=(T).
Then any such self-adjoint extension H has domain D(H)
> §(T) and

Hf= - Af+ Vf, if fe S(T). (A2)

Proof: The operator — A+ V on the set C;(I"), dense
in L*T), is symmetric when V(-)e L% (T). By an
obvious extension of a theorem of Schecter'®to L*(T),
it follows that a self-adjoint extension of this real sym-
metric operator exists.

(A1)

To complete the proof of Theorem A, we consider a
fixed fe §(I') and a fixed ¢ € CZ(R"), where ¢(x)=1 for
lxl <1 and 0< ¢(x)<1on R" We also define f, € C7(T)
for each 0< p <« by setting

f,(x)=¢(x/p)flx) on T.
One finds that'?

1332 “f—fp”L“’(r):O’ (A3)

lim “ f‘prLz(r) =0,
o (A4)

lim “ af - AprLz(r):O-
pco
If V, and V, satisfy (A1), then
[Vi(F =) 22y < | Vale)

1Valr =)z < I Vel =y | 7 - fHLm

From (A3)—(A5), we see that for potentials V of the
type (Al) one has

lim H V(f—f,,)“ 2 =0.

p=o

(A5)

(A6)

Employing, in particular, (A4), (A5), and an elemen-
tary theorem,?® we conclude that fe D(H where H is
the smallest closed symmetric extension of ~A+Von
Cg(I") when V is of the latter type and that, in addition,

Hf= - AF+ V.

Since HC H, where H is an arbitrary self-adjoint exten-
sion of —A+ V on CZ(T), it follows that fe D(H) and that
(A2) holds for the present H and f,

APPENDIX B: SELF-ADJOINT EXTENSION FOR n=3

In this appendix, we will limit ourselves to this value
of n 2! and will assume that T' is an open subset of R®
whose boundary 3T is a closed surface of class C*. Let
W2:2(T") be the usual Sobolev space. Each element of this
space is equivalent to a continuous function on I uar
restricted to I'. The operators V, V,, and V, below are
as described by the first sentence of Appendix A, but
with n=3.

Ikebe® has shown the existence of a positive self-
adjoint extension H° of — A defined as follows. D(H®) is
the set of those f& W*3*(I') whose equivalent continuous
functions f{x) approach zero as x approaches any point
of 8T, For each fe D(H®), H°f= - Af, where ~A is
interpreted in the distribution sense.

The following theorem generalizes a theorem?® of Ref.
22 to include a large class of long-range potentials.
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Theovem B: Let V be such that (A1) holds for n=3.
Then

H=H+V (B1)

is self-adjoint and S(I") € D(H®) = D(H’)< D(V). In addi-
tion, (A2) holds for A’ and this operator is
lower semibounded.

Proof: Let ge D(H®). Then
ng“L”(r>$G”H‘)gllﬁr)+B|lgHL2m<°° (B2)

with an arbitrarily small constant & > 0 and a constant
0< <o

From (B2) and the assumed properties of V, and V,,
it is clear that || Vigll, 2.y, and IV, gll, =1, Obey inequali-
ties similar to (A5). Using these inequalities and the
fact that (B2) holds in the stated sense, it is plain that
V is relatively bounded with H°-bound zero. Hence, the
operator H’ in {B1) is such that D(H’}=D(H*Y < D(V)} and
is also®™ self-adjoint and lower semibounded.

Finally, one proves the assertions that $(I')c D(H’)
and that the present H satisfies (A2) by invoking, in
particular, the equality D(H’)= D(H®) and the character-
ization of H® given earlier in this appendix.
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is then not of the Carleman type, For n=2, results analogous
to Theorem B can probably be proved by combining our ap-
proach with that of Ikebe in Ref. 22, In the special case of
short-range potentials, results on self-adjointness have been
obtained by the eigenfunction expansion method for all n=2,
For this approach and for further references see N. Shenk
and D.Thoe, J., Math, Anal, Appl. 36, 313 (1971).

227, Ikebe, Japanese J. Math. 36, 33 (1967).

23Ref. 22, p. 49, Theorem 5.1,

%4That (B2) holds for @ and g of the stated type is entailed by
two results on p. 49 of Ref. 22: inequality (5.4} and the
Green’s function property mentioned in the sentence following
(5.4).

2See, e.g., T. Kato, Perturbation Theory for Linear Opera-
tors (Springer, New York, 1966), p. 291, Theorem 4.11.
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High frequency approximations for elastic surface waves
propagating along cylinders of general cross section®

J. A. Morrison
Bell Laboratories, Murray Hill, New Jersey 07974

(Received 31 October 1975; revised manuscript received 17 February 1976)

The propagation of high frequency elastic surface waves along the generators of a homogeneous isotropic
cylinder of general cross section is considered. The boundary surface is stress-free and the surface waves, or
Rayleigh waves, are disturbances whose amplitudes decay rapidly with depth into the cylinder. An
approximate equation, and a refined one, are derived which describe the high frequency behavior of the
surface wave modes. These approximate equations lead to the asymptotic results derived earlier by Wilson
and the author for the case of an open boundary curve for which the curvature attains its algebraic
maximum at a single point, and in fact they permit a more complete analysis of the higher order modes.
Moreover, the refined approximate equation describes the behavior of the surface wave modes in the
transition region, at high frequencies, between the case of cross-sectional boundary curves of nonconstant
(and not “almost™ constant) curvature, for which the modes are localized, and the case of constant
curvature, for which they are not localized. Some particular examples are considered.

1. INTRODUCTION

Elastic surface waves, or Rayleigh waves, are dis-
turbances which travel over the stress-free surface of
an elastic solid, and whose amplitudes decay rapidly
with depth into the solid. In a recent paper,! hereafter
referred to as I, Wilson and the author investigated the
high frequency propagation of such waves along a
homogeneous isotropic cylinder which has a cross-
sectional boundary of nonconstant curvature, In the
case of an open boundary curve for which the curvature
attains its algebraic maximum at a single point, it was
shown that there are surface wave modes in which the
disturbance is localized in the neighborhood of that
point, as well as being confined close to the surface.
The case of closed boundary curves was also discussed,
in which the region under consideration may be either
interior to the boundary cylinder, corresponding to a
rod, or exterior to it, corresponding to a bore,

The analysis of the elastic problem involves a scalar
wave equation, a vector wave equation, and rather com-
plicated boundary conditions. Since the analysis is
rather cumbersome, a simpler scalar “model prob-
lem” was first investigated by the author.? The tech-
niques developed for that problem have counterparts
for the elastic problem. The lowest order surface wave
mode for the elastic problem was investigated in almost
as much detail as that for the scalar problem, but be-
cause of the algebraic complexities the higher order
elastic modes were less completely analyzed.

For the scalar problem,? an approximate equation
was derived which describes the high frequency be-
havior of the surface wave modes. Moreover, it was
pointed out that a refined approximation also describes
their behavior in the transition region, at high fre-
quencies, between the case of cross-sectional boundary
curves of nonconstant (and not “almost” constant)
curvature, for which the modes are localized, and the
case of constant curvature, for which they are not
localized.

The purpose of this paper is to derive the analogous
approximate equations which describe the high fre-
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quency behavior of the elastic surface wave modes. In
addition to describing the behavior in the transition
region, the approximate equations also permit a more
complete analysis of the higher order modes. More-
over, numerical solution of the approximate equations
leads to a more satisfactory description of the modes
in the case of closed cross-sectional boundary curves,

The elastic problem was formulated in I in terms of
a right-handed coordinate system with unit vectors
n, t, and k in the directions of the inward normal,
tangent to the cross-~sectional boundary curve, and
along the generators of the cylinder, respectively, as
depicted in I, Fig, 1. Then n will represent distance
from the surface along the inward normal, while s will
be signed arc length along the boundary curve, and z
will be distance along the generators of the cylinder.
Using appropriate units of length, and of frequency w,
we are interested in the case w>>1,

The displacement u is given in terms of a scalar
potential and a vector potential: u=Vg+V XA, We seek
solutions of the resulting scalar and vector wave equa-
tions that satisfy the stress-free boundary condition,
and have the form

¢ =exp(-ifz - wan)
n? n®
x (G“”(s) +nGD(s) + 5 G (s) + T GDs) +-- ) :

A=exp(-ifz - wam)

2 3

X (P ©O)s) +n W (s) + 7_12_ I %Ys) + % r(3)(s) 4oo ) ,

(1.1)

where o, and o, are positive numbers. The disturbance
is confined close to the surface in the region n=0{w™).

In the Appendix we first write down six exact equa-
tions connecting the quantities in (1.1). Since more than
six of the quantities occur in these equations, we seek
an asymptotic approximation which reduces the number
to exactly six. The assumptions that we make about the
orders of GY’, and of the components 'y, T'{’, and
) of TP and the orders of their derivatives with
respect to s, are motivated by the asymptotic results of
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1. We also assume that B=wf, + A, where A=0(1), The
validity of these assumptions may be verified a
posteriori,

In Sec. 2 it is shown that §, satisfies the classical
secular equation for Rayleigh waves on a plane infinite
half-space. Also, the asymptotic assumptions are used
to obtain six approximate equations for the quantities
G, ¢, r® T, T and I\, From these six
equations we derlve the lowest order approximate equa-

tion for G, and relate the other quantities to G, &
is found that

dZG(O)

—T* (1.2)

wlyk(s) - 28A]16 O =0(G"™),

where k(s) is the (sufficiently smooth) curvature of the
cross-sectional boundary curve, and y>0 is a con-
stant given by I (3.17). Approximate expressions are
given for the displacement on, and near, the surface.

In Sec. 3, ten asymptotically approximate equations
for the quantities G, ¢, ¢@, T®, ) r®, Y,
riP, T and T are used to obtain a refined approxi-
mate equation (3. 3) for G*?, which includes the terms
of order G’ omitted in (1.2), and a term involving
w1dG®/ds. The derivation involves the use of Eq.

(1. 2) to eliminate higher order derivatives, It is some-
what remarkable that the more involved elastic prob-
lem, with complicated boundary conditions, may be
reduced to an eigenvalue problem for a single second
order differential equation, which has the same struc-
ture as that for the scalar problem? with simple bound-
ary condition.

In Sec. 4 we discuss some applications of the approxi-
mate equations for G'® to cases not covered by the
asymptotic analysis of I. The refined approximate equa-
tion may be used to describe the behavior of surface
wave modes in the transition region mentioned earlier.
In particular, we consider boundary curves of nearly
constant curvature, the deviation from constancy being
of order w™!, In general the refined approximate equa-
tion has to be solved numerically. An example is given
corresponding to a nearly circular bore, for which the
solution may be expressed in terms of Mathieu func-
tions, We also consider a wedgelike object, similar to
a hyperbolic cylinder, for which the solution may be
given explicitly in closed form. There is a finite num-
ber of modes, and the lowest order mode always
exists, If the maximum curvature is sufficiently small,
then only the lowest order mode exists. The boundary
becomes planar as the maximum curvature tends to
zero, and in the limit the lowest order mode corre-
sponds to a Rayleigh wave on a plane infinite half-space.

2. LOWEST ORDER APPROXIMATION

In the Appendix we write down six exact equations,
(A1)—(A6), corresponding to the quantities in (1. 1),
Since more than six of the quantities occur in these
equations, we seek an asymptotic approximation which
reduces the number to exactly six. A close examina-
tion of the results in I leads us to assume the relative
orders of magnitude
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G = W _
I",‘,”:O(w“AM), I’ =0wam),
where M depends on s and w, and
LM _o(aim), 1<a<0(wl"), 2.2)

das? T

The quantity M is introduced because of the factor
exp[w!/2y(s)], where ¥(s) is given by I(3.19), which
occurs in the potentials ¢ and A, We also assume that
the propagation constant has the form

B=wpy+A, A=0(). 2.3)

The validity of the assumptions in (2. 1)—(2. 3) may be
verified a posteviovi,

It follows from (2.1)—(2.3), (Al), and (A2) that

o4 +1/ch-B=0, o%+1/ch-p8=0, (2.4)
and that

de(0)+w(a K= 2B8,A) G = 2wa , GV =0(M) (2.5)

ds? L 0 ’ .
and

12—i—+w(a = 28,A) TV~ 2wa T = 0(M) (2.6)

52 K 0 t iy = . .
Also, from (A3)—(A6), we obtain

@ 4 ; o _ 4re” -1
wa TP +iwg T, ——ds—~=0(w aM), 2.7
[( -—) ‘°>-iﬁoaTF§°’]-2aLc‘“
(
- o +zB0I‘ dmiha TV =0 M), (2.8)

w[iBoaLG“” + (ﬁg - 2%)1“;‘”] -2a,T + oY
. T

0)

dr
+or—— +iha GV - iV =0 M), (2.9)
and
1 (i}
o[f5- ) o <ot
(2.10)

We now have six approximate equations for the six
quantities G, G, @ 1L 1O and I, But,
from (2.1), (2.2), (2.8), and (2. 9), we find

(30 262)(;“”-1;301 9 =0(wM),

1\ -1
20%‘)1", =0(w™"M).
We obtain the secular equation I(3.5) for B, by setting
the determinant of the coefficients in (2, 11) equal to
zero.

We next multiply Eq. (2.8) by (8~ 1/2c%) and Eq.
(2.9) by iBya 1, add, and use I(3.5), to obtain

By GO+ (B%— @.11)
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1 0)
(ﬁ%- 52‘_2;)[_ 20,60 - angg +i50r§“-iAaTr§°>]

©)
+ifo T[_ 20, T+ a kP + ar—'d;‘;

+iAa, GO - iBOG“’]:O(w"M). (2.12)
But, from (2. 2) and (2. 10),
1\dl®»® 4ar®
o[ (3~ ) T -imes ]
ZG(Q)
=- o, T+ o(wtatm). (2.13)

If we substitute for G’ and '{!’ from (2. 5) and (2. 6),
and use (2. 13), then (2.12) yields an equation which
involves G and I'{?’, and their second order deriva-
tives. The final step is to eliminate I'{®’ by using (2. 11),
from whieh it also follows, using (2.1) and (2. 2), that

1\d&c® 4T
( 0~ _>—— - 1BOQT7‘é—=O(w_1A2M). (2. 14)

2c%) ds?

Making some algebraic simplifications, with the help

of (2.4) and I(3.5), and noting that A? < O(w), we obtain
the lowest order approximate equation

dZG(O) )

—or twlyk(s) - 281G =0(), (2.15)
where the constant y > 0 is given by 1(3.17). The quanti-
ty T is given approximately in terms of G by (2. 11).
Also, from (2.1), (2.2), (2.7), and (2.11), it follows
that

—ifgay  dG©
(B ~-1/2c%) ds

wa I +iwp I = +0(wtam).

(2.16)
Hence, from (2.10) and (2. 16), we have

—a; __ dGY
w(B~1/2c¢%) ds

)
r'=o@w2am), = + 0w AM).

(2.17)

Expressions for G‘? and T'{" in terms of G'* follow
from (2.5), (2.6), (2.11), (2.14), and (2.15),

Corresponding to the expansion in (1.1), the displace-
ment u=V¢ +V XA may be written in the form
u=exp(~ifz)[exp(~ wa )@V +avD +...)

+exp(- wa) WO +nw +.- )], (2.18)

Using the curvilinear expressions for gradient and
curl,? it is found, in particular, that
©)

vO = (GV = wa,6V)n+ d—%— t-iBcOk,  (2.19)
and
w‘°’=(g%2+iﬂfﬁm)n+ (wa IO - TH — iproy
- (warr‘:‘” ~ TP +4T® +-d—;§'(‘2)k. (2.20)

These quantities determine the surface displacement. It
follows from the results of this section that
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) (i3] dG® ; )
v =-wae,G"'n+ -a-—t—zwﬁoG k )+ O0(a), (2.21)

and

O©_ 12 4 2\ @ s, L .__dG(O) -3 )
w g(ﬁo aT)[aTG n B%( ds t ‘leoG k +O(M).

(2.22)

3. REFINED APPROXIMATION

We now consider a refinement of Eq. (2, 15) which
includes the O(M) terms explicitly, This refinement is
derived from five exact equations, (Al)- (A5), and five
asymptotically approximate equations, (A7)—(All), for
the ten quantities G, ¢, ¢, T, TV, 12 O,
rP?, 19, and 'Y, The procedure is to multiply Eq.
(A4) by (8 -1/2¢%) and Eq. (A5) by i8,ar, add, and
then to express all the quantities in this equation in
terms of G, to within the appropriate order of accura-
cy, with the help of the remaining equations. We omit
the very laborious details, but remark that it is neces-
sary, in particular, to obtain a refinement of (2. 11),
and it is found that

(3.1)
where
(3.2)

In deriving the refined approximate equation for G‘©,
repeated use is made of the lowest order approximate
equation (2. 15) to eliminate higher order derivatives.

26830k arf=(B(a, - ap) +agaf]ly+Baan.

The refined approximate equation is

2 (0)
LE + ullyels) - 28160 +A[KG)F + cBAK(s) = ATG
k' dG 0) -
+Ze-——d§—~0( 1y, (3.3)

where the constants ¢, d, and e are defined as follows.
If we let

Z=(az- ap)fi(o,- ap+20.0%], (3.4)
then d and ¢ are determined by the relationship
Z{d[k (s)]E + cByByx(s)} = p(s), (3.5)

where p(s) is defined! below 1(3.28), subject tc I1(3,17}.
Also,

Ze= ﬁzﬂa(ai + ad— 3aia)+io,a(Ta, - 6ay)

2
*%Ti[w%a%— Blar+ar)). (3.6)
We remark that Eq. (3.3) has the same structure as

the refined approximate equation that arises in the
scalar problem, ? Also, it follows from (3. 1), with the
help of (2.1) and (2. 2), that I'{" satisfies a very simi-
lar equation, the only difference being that ¢ is re-
placed by e +f in (3.3), where f is given by (3.2). It is
convenient to eliminate the term involving dG"/ds in
(3. 3) by letting
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GO = (1 - ex/w)H + O(w=2M), 3.7

Then, using (2.1), we obtain the (modified) refined ap-
proximate equation
2
%sl—f+ [w(yk = 2ByA) +di® + cByAk = A |H=O(w™M).

(3.8)

The components of v and w in (2.19) and (2. 20),
which determine the surface displacement, are given in
terms of H by

v = {— way+ [oq,e + La;—a_—ﬁ] K}H"' Owlm), (3.9)
L

v§°)=g§‘H+O(w'1AM), (3.10)
v =~ i(wBy + A = Bek)H+ O(w™M), (3.11)
and
0y _ _(/320__+ o) - -
w® = 5o w+ -gz (e +f)|kpH+O(w™M),
T 0
(3.12)
w(())__@izﬁzr_) ig+0(w'1AM) (3.13)
t = 28 ds ’ '
2 +
w® = - %{“’B"Mw"[%@;ﬁ - (e +f)]K}H
+ O(w'tM). (3.14)

4. APPLICATIONS

The asymptotic results obtained in I by Wilson and
Morrison follow from the refined approximate equation
(3. 8), which in fact leads to some higher order terms in
the expansions. The leading term in the asymptotic re-
sults follows from the lowest order approximate equa-
tion (2. 15). These results apply in the case of an open
boundary curve for which the curvature «(s) attains its
algebraic maximum at a single point, s =0, with «’(0)
=0, «”(0) <0 and «(s) bounded away from «(0) as |s|
— «, We omit the details, since the results are obtained
by deriving the asymptotic solution of (3.8) for w>1
with the help of standard techniques. However, it is
possible to analyze the higher order modes more com-
pletely than was done in I, and without the additional
assumption «(- s)=«(s) which was made there. We
merely quote the result for the term 5, in the expan-
sion I(2. 6) for the propagation constant 8. It is found
that

2
28,8, = <d+ gy _ —L>Kg +

1165 3k
2 4B

16k 4k,

2
+%m(m+1) 5_’;3_3&4 )
K3 Ka
where the «; are defined above I(3.32). For m =0, cor-
responding to the lowest order mode, .this agrees with
the expression for B, in I(3.31).

We have so far considered open boundary curves for
which the curvature attains its algebraic maximum at
a single point, designated by s =0. The disturbance,
in addition to being confined close to the surface in the
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region n= O(w'i), is also essentially confined to the
region |s| =0(w™/%, and decays exponentially outside
this region. ! The application of these asymptotic re-
sults to closed boundary curves for which the curvature
attains its algebraic maximum at a single point, and to
closed boundary curves which are symmetric and for
which the curvature attains its algebraic maximum at
two points, was discussed in I. However, these results
are not applicable unless the frequency is high enough,
so that the disturbance is sufficiently localized in the
neighborhood of the point of maximum curvature. Nor
are the results applicable if the deviation of the curva-
ture from a constant value is small. In both of these
cases we may make use of the refined approximate
equation (3. 8), which in general has to be solved
numerically.

Let us consider boundary curves of nearly constant
curvature, the deviation from constancy being of order
w™l, We assume that w/w,=0(1), where w,>1, and
consider boundary curves for which the curvature has
the form «(s) =k, + w;'k(s), where k, is constant. Then,

k -
A~ T witay, H(s)~Hy(s),

2%, 4. 1)

where, from (3. 8),

d’Hy [ A YOI _ B
ds? +[<d+ 5 " 2@ )0 T o, ()~ 2Rl Hy =0. (4.2)

This is an elgenvalue problem, with A; to be deter-
mined. In general, Eq. (4.2) has to be solved numeri-
cally in the region where v#,(s)=0(1), w/w,=0(1).

If we take Ix(s)=—- 1+ 2w;'k, cos(2s/1), corresponding
to an almost circular bore with circumference 27,
then the periodic solutions of (4. 2) may be expressed
in terms of Mathieu functions, ¢ and the values of A,
are given in terms of the corresponding eigenvalues.
An analogous discussion for the scalar problem was
given in Ref. 2. For a circular bore, corresponding to
k=0, the solutions of (4. 2) which are periodic in s with
period 27l are simple harmonic functions, and

2
w 22 5Y_ X 2
ol =d+ - -
2w0 Bl =d+ = TR 4.3)
where m=0,1,2,---, We have verified that the asymp-

totic solution of the known dispersion relation for the
lowest order surface mode, ® corresponding to m =0, is
consistent with (2. 3), (4.1), and (4.2). An expression
equivalent to that for the leading term in (4.1) was
derived by Gregory,® in the case m =0. The higher
order surface modes correspond to those investigated
by Ronnekleiv’ and we have verified that the asymptotic
solution of the dispersion relation gives the leading
term in (4. 1), independently of m.

We now take k,=0 and lk,(s) =k, sech’(s/l), with k,
>0, corresponding to a wedgelike object somewhat
similar to a hyperbolic cylinder, In this case the solu-
tion of (4.2) may be written down explicitly. ® The solu-
tions which vanish for |s| —« are

Hy=[sech(s/)]’=F(2b,, + m +1,~ m; b, +1; 5{1 - tanh(s/1)]),
4.4)

J.A. Morrison 961



where
b =[(w/we)vksl + 112 =m~3>0, m=0,...,N,
(4. 5)

and the corresponding eigenvalues are given by
2(w/wy)ByA (1% =b%. The hypergeometric function? in

(4. 4) terminates, and is a polynomial of degree m in its
argument. There is a finite number of modes, and the
lowest order mode, corresponding to m =0, always
exists. Note that for m =0 the hypergeometric function
in (4.4) is identically equal to 1. I wyky <2w;, then
only the lowest order mode exists. In the limiting case
ky — 0, corresponding to a planar boundary, b, —~0 and
Hy—1. That is, the lowest order mode tends to a
Rayleigh wave on a plane infinite half-space as &y —0.

In a subsequent paper!® the results of the numerical
solution of the refined approximate equation (3. 8) for
various cross-sectional shapes, corresponding to both
open and closed boundary curves, will be presented,
The mode behavior in the transition region between the
case of cross-sectional boundary curves of constant
(and not “almost” constant) curvature, for which the
modes are localized, and the case of constant curvature,
for which they are not, is vividly depicted by these re-
sults, Also, comparisons are made with numerical re-
sults based on the asymptotic formulas in I. In addi-
tion, some higher order modes are considered. The
phase and group velocities are also computed.

APPENDIX

We first write down six exact equations which follow
from (1.1) and the equations for ¢ and A derived in I,
The terms independent of £ =wn in the first two equa-
tions of I(2.10) yield

&6 af 2, 1 2 0 ) 4 @)
W+[w (a"+c_2,:>_ﬁ +waLK]G - Qwa, +x)GP+G
=0, (A1)
%I;gl+[w2(a"’7+ E%)-Bz'%waﬂc—xz]r‘fo’
_@waT+mr?%+n“-2x%%2—K41m=o, (A2)

The divergence condition I(2.15) and the boundary con-
ditions I(2.12)—(2.14) yield

ar®
War+KLY - I0+ipTY - === =0, (A3)
w? (a2 + 11 GO 20wa, GV +G®
Lo ¢y 2c% L
(1) ©)
+ B - wa) B g0 - wa,T) =0,
(A4)
[wz (azT-*- 2%) +wa k- K{]Fim - Quar+K)TP+rP
1) (0)
- d71"s,,_ +(wagr-k) d;s" +iBwa, G = G1Y=0, (A5)
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w? (0121+ ._1'_.)1";0) - zwaTrl’:l) + F;Z) +iB(r;(|1) - waTl"’('O))

2c%h

dG(i)
ds

dG™®
das

=0. (AB)

+(way - k)

Four more equations may be obtained from the terms
independent of £=wn in the last two equations of I(2.10),
and from the terms proportional to £ in the first two
equations of I(2,10). We do not write out the exact equa-
tions here, but merely state the asymptotic approxima-
tions to them which are obtained by making use of
(2.1)—(2.4). It is found that

d2 0)

— tw(amk- ZBOA)F;(,O) - 2waTFr(|1)

ds

0)

dry
+ 2k s

+x' T =0(wtaM),

dZ Fth)

ds? (48)

+wlapk— 2B,A)T - 2wa , T = O(w™ aM),

wa kG +w(a k- 28)A)GY - 2w, GP

20> )
+ 26 4o

22(0) ©0)
ds? Kd 2 +K'dG

=0M
ds? ds (),

and

wa kT + w(apmk - 28A) T = 2wa 'Y

2 20 (0)
&1 i VL) ¥ L

A
ds? ) ds (A10)

+

We also use the asymptotic approximation to (A6),
1 ,
w2<B§ - Ec—2>1",§°’ —2wa I —iwap(wsy + AT
T

(1) G(
+inOI‘,‘,”- _ddGT + (wap— K)d

0
_ -1
Ze =0(w"*AM).

(A11)
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Derivation of an exact quantum-mechanical formula for the
second term in tha,activity expansion of the correlation
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We derive an exact expression for the second term in the activity expansion of S(Q,w), the Fourier
transform of Van Hove’s correlation function, for a quantum system of bosons or fermions (spin neglected).
The results for both the self and distinct parts of this function are given in terms of standard two-particle
T matrices. The detailed-balance condition and zeroth and first moment relations are confirmed. An
expression for the second term in the activity expansion of S(Q), the structure factor, is obtained. The
derivation follows directly from the definition of S(Q,w) using formal operator techniques; in addition, we
show that the conserving T approximation for two-particle Green’s functions yields the same result.

1. INTRODUCTION

The function S(Q, w), sometimes called the “scatter-
ing law” or “dynamical structure factor,” is defined to
be the space and time Fourier transform of the Van
Hove pair correlation function! for a system of parti-
cles. It has been utilized in the study of inelastic
neutron scattering, absorption of radiation in matter,
and inelastic electron scattering from nuclei. >~® This
function is characteristic of a particular system of
particles; when the system is considered as a scatter-
ing medium the quantities #Q and Zw are the momentum
and energy transfers, respectively, from the projectile
to the medium. (We set Z=1 for convenience; to restore
7 in any formula replace m by m#™ and w by 7iw.)

The definition from which we begin is

S(Q, w) = (27nQ)! f_: dt exp{iwt) <§ exp[-iQ- r,(1)]

xexpliQ- r,-<0>]>, A1)

where n is the density of particles, Q is the volume of
the system (limQ —~ « is to be taken), and the position
operator r;(f) in the Heisenberg representation is given
by

r,(f)=exp(~ {tH)r, exp(itH) (1. 2)
where H is the many-body Hamiltonian; the grand
canonical ensemble average is defined by

(©) =Tr{exp[- B(H - pN)1O}/Tr exp[- B(H - p V)],

(1.3)

where 8 is the inverse temperature, p the chemical
potential of the system and N the number operator. The
terms with I =j in (1.1) yield the self part S* while
those with I #j yield the distinct part S’, such that
S(Q, w) =S(Q, w) + S¥(Q, w). This separation is re-
quired in the analysis of coherent and incoherent scat-
tering from systems having nonzero spin or a mixture
of isotopes,

In this paper we derive an exact quantum mechanical
expression for the next-to-leading term in the density
or activity expansion of S(Q,w). That is, we go one
step beyond the familiar ideal gas expression for
S(Q, w) in the same sense that the second virial coeffi-
cient provides an improvement to the ideal gas equation

964 Journal of Mathematical Physics, Vol. 17, No. 6, June 1976

of state. Our result is expressed in terms of on- and
half-on-shell two-particle 7 matrices and, if apposite,
two-particle bound state energies and wavefunctions.
We demonstrate two methods for obtaining this result:
in the main body of the text, (Secs. I and III), we
proceed directly from definition (1.1) with the aid of
certain operator relations’ to obtain separately both
S$(Q, w) and $°(Q, w); in Appendix C we use a Green
function technique, starting from the expression for
S(Q, w) in terms of a certain two-particle Green’s func-
tion. We show that these two approaches yield the same
result provided that the latter includes the additional
term in the conserving T-approximation for the two-
particle Green’s function,

In Sec. IV we confirm that the condition of detailed
balance is satisfied for our results and study the zeroth
and first moment relations. From the zeroth moment of
S(Q, w) we obtain an exact expression for the coefficient
of the linear term in the activity expansion of S(Q), the
structure factor.

Il. PRELIMINARIES

We consider a quantum system containing spinless
particles (bosons or fermions) of mass » which inter-
act via a two-body potential V; the system is assumed
to be dilute so that the activity, z =exp(Bu) < 1; let
A= 2rp/m)/?, The Hamiltonian is

H=Hy+H=2K;+ 2V,
i

i<

(2.1)

where K represents the one-particle kinetic energy
operator. The standard two-particle T operator is
defined by

T()=V+V(~HP)T(g), (2.2)

where ¢ is a complex variable (not purely real). The
two-body system with Hamiltonian Héz’ + V may possess
bound states |B) with energies ez <0 after the center-of-
mass energy has been removed, (For the sake of brevi-
ty we omit bound state contributions in presenting our
results but indicate in Appendix A how they may be in-
cluded if desired.)

Matrix elements of the T operator between eigen-
states of H¢® are introduced: we write (p1py! T(8) |kky)

where Hy” p;p,) = (E,, + E, ) |p;p,) and E, =p{/2m. Re-
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duced matrix elements (pi T (P, ¢) k) and (pi T(Z) k) are
defined by (A6) and (A7) in Appendix A; p= (p; - p»)/2,
P=p, +p;, etc. The function (pyp,| 7T (£)1kK,) is analytic
in the complex ¢ plane except on the real axis, We
write (p;p2| T (x*) 1 kiky) for lime — 0*(pypy | T (x + ie) | kyks)
where x is real: By property (A3) the real part of this
function is continuous across the real axis, and we
write, simply, Re(pips! T (x) kk,); the discontinuity in
the imaginary part is given by (A8).

The density of particles in the system is given by a
power series in the activity according to

n=A3z +mzt4ee -, (2.3)
where (neglecting bound-state effects), ®
ng =2 2-3/23\-3 _ 23/2)-38 —dp—s exp(- Bpt/m)
(2m)
xRe(| T (s%/m) o), + 293P v- | BIE
(= Br*/m) ~ exp(= pp*/m .
« EXp (kz mm_)pze;p)Z D / )(p|T(k2/m )lk)
x (k| T &%/ m) | p)s (2.4)

with Ip),=1p}z |- p). Beginning with (2. 4), upper and
lower signs are used to denote Bose and Fermi statis-
tics, respectively.

Let us define
F(S)(Q, w) — ZTTHS(S)(Q,OJ),
F(d)(Q, w) :27mS(‘”(Q, (.U).

(2. 5a)
(2. 5b)

These quantities possess expansions in z of the form
SQ,w)=5@Q,w)+25(Q,w)+---, (2.6)
FQ,w)=2FQ,w) +2’FQ,w)+---, @.7)

where it is well known that, (for the ideal gas limit),

_ 2\2
50(@, ) = 5@, ) = (m/2m)! /2 exp 2o 2]

(2.8)
The object of our attention is S;(Q, w) which, by com-
bining (2.6), (2.5), (2.3), and (2.7), is given by
5@, w) = @1 AR (Q, w) ~ X¥np$,(Q,w),  (2.9a)
$'(Q, w) = (2m) N3 F, P (Q, w). (2. 9b)
Thus, our purpose is to derive exact expressions for
F,9(Q, w) and F,'(Q, w): These will yield the first

correction terms in the activity expansions of S‘s’(Q, w)
and S9(Q, w).

I1l. DERIVATION

We now derive exact expressions for FZ(S)(Q, w) and
F,“(Q, w) starting from Egs. (2.5) and (1. 1). 1 The
grand canonical expectation appearing there may be
evaluated by summing over an appropriately sym-
metrized orthonormal basis, |M;--.My), for fixed N,
then summing over N, Thus,

- o
FQ,w)=1Z3 f dt exp(iwt) 2, -:]—,-Ee"’
N=y « P

-0
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e _ — (N)
% z,zm(M‘ My|exp[- (B—it)H'™]

Xexp(-iQ- Ty)exp(- itH™)
Xexp(iQ- r;)P| M- - - My), (3.1)

so that F(Q, w) corresponds to I =j terms and
F9(Q,w) to l#j terms; H'Y is the Hamiltonian for the
N particle system, P is the permutation operator and
€7 =1 for bosons and +1 for fermions according to
whether P is an even or odd permutation, respectively;

the grand partition function has the expansion
Zg=1+z003+- ¢, (3.2)

We choose a representation consisting of states
{py+--py) where each Ip;) is an eigenstate of the cor-
responding kinetic energy operator, i.e.,

K,|p)=E, |py). (3.3)

Each summation on M; is replaced by an integral on
(2m)=3dp,; to be consistent each |p,;) has dimensions of
(volume)!/? and (p;|p;) = . In this manner we obtain

from (3.1):
dp -\~
@m? e""(an )f at

x exp[it (w + i - M)]

2m 2m
ool (- £
278Q TP 2¢2 2m)
which agrees with the ideal gas result (2. 8), and

FZ(Q,w):Q'If:dtexp(itw) %%e&

FI(Qy (&)):

(3.4)

X (pyps | exp[- (8- i) H®]exp(- iQ- 1)
xexp(~ itH' ) [expliQ- r,) + exp(iQ- 15)]| p;ps)s
- Q)\-SFi(Qy w), (3. 5)

where |piPs)s= |piPs) £ | P2p;) accounts for statistics,
There are two different types of contributions to F,

arising from the two terms in brackets in (3. 5); the
first term, exp(iQ-r;), yields F,'s’ while the second
term gives F,@,

In evaluating (3. 5) the essential problem is how to
treat the operators exp[~ (3 —i)H*®’] and exp(- itH®)),
Our approach leads to the introduction of the T opera-
tor (2.2). We use the operator relations!!

1
exp(- =5 [ drexpi- e Ay, .6)
7l Jo
where the contour C encloses the real axis of the com-
plex ¢ plane in the positive sense, and
(€= H)™= 25 (¢ - Hy) ™ [Hy (£ = Ho)'T'. (3.7)
Combining these relations and isolating the * =0 term
leads to
1

exp(= TH'™)) =exp(- 7H, V) + 5= | dtexp(~ 77)
0 27 C-

1 1
x (- H,® T(2) C— H,® *

(3.8)
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This result is now employed to replace the operators
exp[- (8- it)H®] and exp(- itH®) occurring in (3. 5).
The two terms of (3. 8) thus give rise to four terms in
F,'9 and four in F,'®’; in addition, each of these has a
direct term and an exchange term arising from the two
possible permutations of the final state labels. These
contributions will be denoted by

( ( ( ( (
F 8) _ XO)+XT1)+XT2)+XTT), (3.9)

(3.10)

where in (3. 5) exp[— (8- it)H®’] is to be replaced by the
corresponding first term of (3. 8) in (0) and (71) and by
the second term of (3. 8) in (72) and (TT) while

exp(— itH®) is replaced by its first term of (3.8) in (0)
and (72) and its second term of (3. 8) in (7'1) and (T7).
We simply note that the various terms in the expansion
of (3.1) can be represented by diagrams similar to
these of Blochm; however, there is little to be gained by
presenting the diagrams for the N=2 terms and, there-
fore, we do not do so.

Fz(d)_: ¢(0) + d)(Ti) + ¢(TZ) + ¢(TT),

The interaction—independent contributions are

dpydp [_ (zi 2&)]
(2m)® exp |- # 2m+ 2m

x{o(w - py - Q/m - @*/2m)Q?

+ 6(w - pp - Q- Q%/2m)Q(2m)*5(p; ~ po)}

- O F(Q, w)

_ mz _Bm QZ 2]
—* 4nBQ exp[ Q? <w 2m>

$0(Q, w) =1 27! (2 )6 exp[ B( )]

X 6(w - p; - Q/m - @*/2m)Q(27) 36(p1 +Q-py)
=exp(- fw)x (Q, w). (3.12)

Note the cancellation which occurs in (3.11): the same
result is obtained if one neglects the effect of Z,. and
considers only the linked diagrams for F,.

X(O)(Q’ w) = 27]’9-1

(3.11)

The other components of F, are interaction-depen-
dent, the interaction entering via the T matrices. The
complex integral in the second term of (3. 8) has matrix
elements which, because of property (A4), can be ex-
pressed in terms of a real variable of integration,

_ dcexp(- ) Pypr | (€~ Hy®) T (0)(¢ - Hy®) ™! kyky)

:_[m% exp(- (pip2 | T(x") 1 kiky) }

) Imjl " _E
The integration over ¢ in (3. 5) yields a delta function in
every case. Accordingly, we obtain

omi

(3.13)

XTP@w)=- 207 [ B eyl 4, +E,)

(2m)®

x f dx 8(w + E, +E, %)

(b1 +Q,p2 I Tx") Ip1 +Q, p2)
XIm{ ot — E91+Q _ Epz)z
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~E,, )+ - Ey - Ep))

(01 +Q,pp 1 TG) I +Q, 1)
6"~ Eyua= Ep )0 = E, - Eyyq )}, (3.14a)

Y2 Q, w)_—ZQ'f (2”)6[ dx exp(— fx)

1p2 i T(x™) | 1Pz)s}
& -E, - B, |’

+

X6(w +x — E,1+Q - Eﬁz) Im{

(3. 14b)

dpi d| Zdx’
K@) =pwt [ Budndudl [T o g

©

dxd(w +x' —x)
(P1pz | T(x"") | Kiky),
X1 + Iz
m{(x’ - E, ~ E,) (" = E, - E,)

(kl +Q’kle(x+)‘p1 +Q’p2)
xIm{(x+_ Ekl-uQ — Ekz)(x+_E )}

v1+Q—Ep2 ’
(3. 14c)
¢ (Q, w) = - 20! lé_)% exp[- B(E,, + E,,)]
xf dx d(w +E91+Ep2—x)
P1+Qp | T ip1, P + Q)
XIm{(x*—Epi*Q_E )(x+—E _Evz*Q)
(p +Q,p2 1 T(x") I ps, p1 + Q)
1 ('~ Epq- Ezz)1 }’ 3.152)

6T (Q, w)——zn'if o f dx exp(— Ax)
X8(w +% - E, = Ey.q)
le{(x P21 Tx*) Ip; - Q,py +Q)s }

- EP1 - EPQ)(x+ - Eni-Q - EPz*Q) ’
(3.15b)

( oot | 2p1dps dky dk,
® TT)(Q’ w)=2Q [ e

X

Bx’)f dxd(w +x' - x)
(pips | T(x") 1K1Ks)s }
I "~
X m{(xr — Ep1 - Epz)(x - E,e1 - Ekz)

(ki + QK| T(x")ps, P2 + Q) }
XIm{(x“—Eki,,Q—E,,Z)(x*— E Evz*fQ) .

(3.15¢)

The x-integration in each of these expressions may
be readily performed. Then we introduce relative and
center-of-mass momenta and the reduced 7 matrices
as defined by (A6). Thus, we obtain, for example from
(3. 14a),
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(”)(Q»“’)=—2f@%§ exp( iﬁ)f o exp( 4ljnP2) exp[ P g2 Zp-Q—P-Q)]

{@T(p W+ P/dm +pt/m+Q*/2m—p-Q/m -~ P - Q/2m +ie) | p)

(w+Q/2m-p.Q/m~-P. Q/Zm +d¢)?
QI TP,w+P/4m+p*/m+Q/2m—-p.Q/m-P.Q/2m+ie)| -p+Q) | 3. 16)
* o+ Q@ 2m - p-Qm-P -Q2m+ic)(w-Q*/2m +p.-Q/m-P.-Q/2m +ic) |’ :
there are corresponding expressions arising from (3. 14b), (3.15a) and (3. 15b). The corresponding result for
(3. 14c¢) is

_ dkdP [ “dx @ T@,x%) k),
xTPQ w)=2 f "P@,)T f - exp(- &)Im{(;f 22— Pl em) " — k2 m = P2/4m)}
I (6 +3QIT(P+Q,x" +w)lp + Q)
6 +w—(k+3QP/m- (P+QP/am)(x* +w - (p+ QY m— (P +Q)?/4m) }

and there is an analogous result for (3. 15¢).
To perform the x-integration in (3. 17) we require the formulas (B1) from Appendix B and (A8) from Appendix
A; We obtain

(8.17)

—_4p-y. [ dpdK B0*\Re | T(p*/m)| k), BP?
X(TT)(Q’w)_—4P \4 @n) exp( m/ pz/m k"’/m (2 ) exp< o
m (k+3QIT(P +Q,w + P/ 4m +p*/m +ic) | p + Q)
(W+p/m—km-Q¥2m-k.Q/m-P.Q 2m +ie)(w - Qf/zm p-Q/m-P.Q2m +ie)
_op.y. [[Gdkd B\@I T@/m) | )AIT @*/m~)k), pP
2PV (27)8 exp( ‘m/) @2/ m - p¥/m) (1% m - k2/m) (211) exp <— 4m)
X Im k+2QIT@+Q,w+ P/dm +1%/m +ie) | p + 3Q)
(+/m -k m - Q¥ 2m-k-Q/m-P.Q/2m +ie)(w +12/m — pX/m - &°/2m ~ p-Q/m-P-Q/m+ie)(’

(3.18)
and the corresponding expression for ¢‘77(Q, w).

Finally, the center-of-mass momentum integration in (3.16), (3.18), and the corresponding expressions for
X, 6T ¢ and ¢7™ can be performed with the aid of Egs. (B2), (B3), (A7), and (A8); we also use (A13)

to replace a derivative of the T matrix where it appears. The results are:

X( X(T“"’X(T“
where
4 3 i . . 2
YT, w)= 7:83[ @y exp[ = (p- EQ)Z](CD— E;?)exp[— %?—(w— p_MQ_) ]Re(plT(PZ/m)lP)
2 1
+7—TBﬂQP V. ‘(g’)T;GXP[ (p—EQ)z]

expl- Bm/@*(w - p.Q/m +p*/m - k*/m)*] - expl- pm/Q*(w - p. Q/m)?]
(k2/m - p?/m)?

X (p| T (R2/m*) k) (k| T (#2/m") | p), (3. 19a)
) am? a | B, . pm p-Q\Re@!T(p%/m)| —p+Q)
xe Q)=+ BQP f (27:)8"""[ m @ EQ)Z]‘”‘"[‘ q <“’ m)J 22/m~ (- p+ Q2 /m

dp dk N 2
85 ool fo o] 52 4]

*ﬁé (2m)
< LI TE/m) k) (&I T %/ m") |~ p+Q) ’
(kz/m p%)(kZ/m (-p+Q%/m) ’ (3.19a")
Bp? . 2 .
e ol ) £ T
2m? dp dk Bm _p-Q _ E pY
* ﬂQP (27)8 {exp( )exp[ Q2 ( 2m m +%_E>]
-ew(—ﬁi ool G- g~ 53 Yume il boremim, 1o
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(rT) _ dpdk 8P \Re(p! T (p*/m)| k),
Q)= BQPV (z)se"< m) Yy

« Re(k+3QI T((p + 3Q)/m) Ip + 3Q) exp[_

@+ 2Q7/m - (k+2Q)?/m
< Re(s+ 2QI T((k + 3Q)*/m)Ip+3Q) |

pm( & p_-Q)Z]
o[- 2 o 5 - 25
Bm< Q2 kQ +E_k22
@ m m

]
)

&+ 3Q%/m = o+ 37/ m
L&+ 3QITE/m) 1)U TE/m7) 1 p + 3Q) dpdkdl at
X~ (1Y m) @ m ~ (p+ SQ/m) +nBQP v @n? °F <__
o RITE/m) NI TE/mO)k), Bn( @ p-Q I p¥
@ m = P m) (5 m — &%/ m) {2 exp[‘ Q2< “ o S %) ]

< Re(k+3:QIT((p+3:Q7%m)Ip+:Q)

o+ Q)Zf k+32Q)°/m

(uzfm

¢(T1)_¢)(T1)+¢(Tl)’ where (I)(Tl)(Q’w) iX(TI)(Q,

(7‘2)(Q w

P V/—p—g exp<
2m? _L_
etV ) Ty &

o PITE/m) R KIT (kY/m7) Ip-Q)s |
&/ m - p*/m) 2/ m - (p~ Q/m)

Q

T (Q, w) is obtained from x‘77(Q, w), as given by (3.19¢), by replacing the states (p! by (-

I-p-2Q).

o 2)]- 5
- Jexp|- F w

du pm Q2 JEERAY
+famenl S-S n- )]
ok QT /m*) W)l T@?/m™) ip + 3Q)
&+ 2Q*/m)et/m - (p + 2Q*/m){’

(3.19¢c)

w) with final state |- p+Q) replaced by ip~- Q) in each term of
(3.19a"), and tb,(g“’(Q w) =2 x5™(Q, w) with final state |p) replaced by |~ p) in each term of (3.19a),

Pl 73

(3.20a)
Re(pl T(p*/m)ip- Q.
2m I p¥/m-(p-Q¥m
@ ,p-Q K _p}
_2m+ m +m—m>]
(3. 20b)

p! and Ip+3Q) by
(3.20c)

Now, combining (3.11) with (3. 19), we obtain Fz(s’(Q, w), while (3.12) and (3. 20) give Fz(‘”(Q,w). Our final ex-
pressions for §;(Q, w) and S;'?’(Q, w) are then given by (2. 9).

Iv. ADDITIONAL PROPERTIES

There are a few well-known properties which must
be possessed by S(Q, w); from our point of view these
serve as checks on our calculation.

The detailed-balance condition is S(- Q, — w)
=exp(- Bw)S(Q, w). This relation is satisfied by
Fy(Q, w), but it is not true that F,’(- Q, - w) = exp(~ fw)
sz‘S)(Q, w) because of the exchange terms. We can
show from (3.11), (3.12), (3.19), and (3.20) that (if
direct and exchange are denoted by subseripts D and E,
respectively), the detailed-balance relation is satisfied
individually by x'© + ¢, xtT +y 57 ID LT

(72) (TT) { (TZ) ( (T
+op™, 0T, x5 + o ,andx"’+¢> v

The familiar zeroth moment relations are

JadoSOQw =1, [ dwSQw)=5@, = @4.1)
which defines the structuve facture, S(Q). Since

Jodw $Q @) =1, 4.2)
it is necessary, according to (2. 9), that

J 2 do B9, w)=2mm,, (4.3)

where n, is given by (2. 4); this acts as a check. On the
other hand, if we define

SQ=1+25@Q+--, (4. 4)
then the equation
SHQ =@M [ - dw F,(Q, v), @.5)
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[ :
gives a new result, namely, an exact expression for the

first order term in the activity expansion of the struc-
ture factor.

Let us denote the zeroth moment of the various con-
tributions to F, by a subscript 0. Confirmation of (4. 3)
is obtained from equatmns (3.11) and (3. 19) by showing
directly that 573’ =0 and x>’ + xg ™2 = 27n,; we require
equation (A12) to show that x§73 =x; 7’ =0. Then we

make use of {A12) to show that Eqs. (3.12) and (3. 20)

yield 6™ =S =0; from ¢ and ¢;™ we obtain the
result
4932 pe si2 [ _4p
s@=szrem (- G2) 2 [ B

Bp*\ Re(pl T(p*/m)|p-Q)s

Xe""(’ ) pt/m = (p~ QF/m
2

+23/2p. V- —(52’—”)—6- (-%)

o OITE*/m") 1K) &I T ®?/m") Ip- Q)

@)@ m - p-Qmy © &9

The first moment relations are usually written
J7 dw wS@ (@, w) =Q%/2m, (4.7a)
/. dw wS®(@Q,w)=0. (4. o)

We now confirm that (4. 7a) and (4. 7b) are satisfied by
our result. We denote the first moments of the various
contributions to F; by the subscript 1, and, using
formulas (Al4), (A15), (A16), and (A18), we can show
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that Egs. (3.11), (3.12), (3.19), and (3. 20) yield the
following (see Appendix A for notation):

2
X0 + 3 = 97, éQ_ _95/2y
f (2m)? ®|exp(- BD7|p),, (4. 8a)
(T1) 25/21r7\'3f(2 )3(p|eXp(— Bﬁo)ﬁlp)s, (4. 8b)

(T 25/21r>t'3f PHE ®] (exp(- BH) - exp(- 8H)) ¥ |p),,

(4. 8¢)

V=0, (4. 92)

BT = 98/27373 f (—;i%g(p|exp(— BH)V|p-Q),, (4.9b)
¢(T2) 25/2 )\-3/ (2 )s(plexp(— ﬁﬁ)i}'lp—Q)s,(4. 90)

S{TD _ 9512y )\-3/ @r )3(p’(eXp(— pHy)

- exp(- 8H))V|p - Q). (4.9d)

Thus, combining all of (4. 8) and (4. 9) we obtain
I dw wF, 9 (Q, w) = 2mn,(Q%/2m), (4.10a)
Sl dwwF,'PQ,w) =0, (4. 10b)

which agree with (4. 7a) and (4.7Tb).

V. DISCUSSION

We have obtained exact expressions for the coeffi-
cient of z in the activity expansions of $*’(Q, w) and of
$9(Q, w): These are given by (2.9), (3.9), (3.10),
(3.11), (3.12), (3.19), and (3. 20). These results are
expressed in terms of on- and half-on-shell two-parti-
cle T matrices. It is assumed that the two-body inter-
action depend only on the relative coordinates and that
this function be integrable over all space; no further
restrictions are required. The effect of two-particle
bound states was not included in our results but can be
introduced by means of the second term in (A8). Statis-
tics was included and spin can be quite simply if de-
sired. Thus, our results are quite general.

An exact result for the coefficient of z in the activity
expansion of the structure factor S(Q) is given by (4. 6),
In Appendix A we obtain some properties of the T
matrix which to our knowledge have not previously been
recorded.

In Appendix C we demonstrate that Baym and
Kadanoff’s conserving T app'roximaz‘ion8 for the two-
particle Green function gives the correct result for
S(Q, w) to first order in the activity. Note, however,
that this technique does not allow S*“*(Q, w) and
5(Q, w) to be calculated separately, Moreover, the
Green function theory requires a considerably more dif-
ficult calculation (not described in detail in Appendix
C), than the method used in Sec. III, This suggests
that the Green’s function formalism is not the most con-
venient for activity expansion calculations.
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We are aware of a derivation by Dashen and Ma'? of
part of the coefficient S;(Q, w): They obtained only the
two lowest order terms in @ and w, In that paper a
more general class of correlation functions was con-
sidered and these were given in the low energy limit
in terms of scattering amplitudes. Although their non-
relativistic formula (7, 7) is simply related to part of
S,(Q, w) we have been unable to make a detailed com-
parison of our result with theirs; in fact, it is not
obvious that our formula for 5;(Q, w) does possess such
a series expansion.

APPENDIX A

The properties of the T matrices which are used in
this paper are presented (and in some cases derived),
here. The T operator is defined by (2. 2), and its
matrix elements in the momentum representation are

©102] T (&) | keks)

=(Pipz|V]k1k2)"’f dlydly (pypa! VIlilo) (ily | T(£) [ kyKo)

@) (- E,-E, ’
(a1)

where the complex variable ¢ is not purely real. It
follows immediately that!3

‘aa_g(PiPz | () | keky)

dlydly (1P T(£)1131)(A4ly | T(§)Ik1k2)
@) (€= Ey - B, )

The interaction V is assumed to be such that V(ry, ry)
= V{(r;-r,)=V(ry- ry) and [ drV(r) exists: It follows that

2| T(2) [kiky) = (ki) | T(2) | pypy) = (0201 | T () | oky).
(A3)

(A2)

In addition, hermiticity of V implies that if x is real,

®p1 ] T0") [kl = (o2 | T (67) | k). (A4)

Introducing the center-of-mass and relative momenta
corresponding to each two-particle state we obtain

(prp2| V| kiky) = (2m)%8(P - K)o | 7| 0), (A5)
where (pl Vik) = I7(p— k)= 17(k— p). Thus, reduced or
one-particle T matrices can be defined according to

2| T(2) [kiky) = (27)°6(P - K)p| T(P, £) | k);

the reduced matrix elements have symmetry properties
corresponding to (A3) and (A4). It can also be shown
from the definition that if « is independent of P, then

®| TP, P/4m + o) |k) = @ |T(e) k) (A7)

does not depend on P, The latter quantity is said to be
half-on-shell if a=p?/m or a=k*/m, An expression for
the discontinuity across the real axis of the T matrix
can be derived!‘:

Im(p!T(P,x*)lk):— Tr[ %é(x— P2/am - 1*/m)

x| 7@/ m*|1)(| T/ m")|x)
- TTZB> 5(x — P*/4m - €5)(ep ~ p*/m)

(A6)

X (e — k*/m)(p| B)(B|K), (A8)
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the right side containing half-on-shell T matrices,
bound- state energies ¢ <0 and bound-state
wavefunctions,

We now develop some additional properties which are
based on the operator relation (3. 8),

exp(_ TH(Z)) _ exp(__ THO (2))

= (@2mi) [ dtexp(- TO(& - HyD) 1T (©) (¢ - H,®),
(A8)
where the path of integration C surrounds the real axis

of the ¢ plane in the positive sense. By expanding both
members of (A9) in powers of T we obtain

® E1p2 | T™") | kiks) _
[ dxlm[( TR, e -Ekz)]"o’ (a10)

(piple(x)|k1k2)
/. R e E, - E,)6 - E, )

=—7(psp. | V|k1k2)-

These formulas may be combined with (A8) (we
neglect the bound state term for brevity, but there is
no difficulty, in principle, to include this contribution
if desired), to yield, with the help of (Bl), such results

(A11)

as
Re(plT(pz/m)lk) Re(p!| T (#*/m)Ik) _dl
p2/m - B2/ m 2/ m - p*/m +P.V./‘(21'r)3
L QITC/m)NAITE/ )R e apa)

@ m = p*/m) @ m = &/ m)
a
2 Re@I T Kz + [ 1o

XRe(®/m = p¥/m +ie)(p| T3/ m*) ) A| T (*/m") | k)

=0, if pP=k?, (A13)
(p®/m)Re(p| T (p? m)ik) | (#*/m)Re(pi T(®2/m)k)
p¥/m—km k/m = pt/m
dl @ T/ m)\)AI T/ m)ik)
v [ e e T s
=(p| V|k), if p?#&?, (A14)
Re(p|T(p*/m)|k)+ P- V-/ (zd; ;
2 * 2
(A15)

Returning to (AQ) and defining the single-particle
operators H=2K + ¥ and H,=2K we obtain the result

exp (_ @)Re(p\f(pz/m)ik)

m P/ m - kY m

+ exp (- %"’2> B.?_ﬂ?_'l@z_/zw

kY m—p*/m

+P.V-

dl < B\ @I T/ m) U T/ m ) ik)
27)3 exp m/ @/ m = p*/m)(1*/m ~

= (p| exp(- BH) - exp(- BH,) |K), I k2#p%,

Another operator relation, easily obtainable from (3. 7),
is

(A16)
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kz/m)

exp(- BHP)V = (2ni)! [ dt exp(- BE) (& - HyP) T (¢),

(A17)
and this gives the formula
2
exp |- %)Re(plT(pz/m)lkHP- v-[éﬂ”)—3
B2\ (| TE¥/m*) 1)U T/ m") k)
“”( m ) 2/ - pY/m
= (o] exp(~ AV |K). (A18)
APPENDIX B

The following formulas are used in this paper to
evaluate certain integrals (lime — 0" is implied in every
case).

If the function f is such that f(x +ie)

R )

a+ie)(x - b+ie)
- 7(a - by![Refl(a) -

=f*(x - ie), then

@

Ref®)]+P- V| ax

mfle +ie)
= x(x—a)(x—b)’ if b#a,
_ﬂRef(a)+p.V.fdemf(x+ii)::;?f(a+ie),
if b=a,
(B1)

If g is a function of two variables and if g; and g
denote the two partial derivatives, then

[iax [ aPg(P, PX) Im{(a~ PX +ie) (b - PX +ic)!]

_(n@- bt [ axX X g(@X2, a) - g (62X, B)], if bta
7 [ aX[2ax Y, (@K, @) + X-lgy(@X 0], if b=a
(B2)

and
f_i deow dPg(P*, PX)b{a — PX) =f01dXX' o (@272, a),
(B3)

These formulas are used to perform the center-of-mass
momentum integration leading to Egs. (3.19) and (3. 20).
In particular, (B3) is used in connection with (A8),

APPENDIX C

Here we present an outline of how the theory of tem-
perature Green’s functions can be used to compute
5(Q, w) to the same order in z as in the main text of
this paper. The definitions of the one- and two-particle
Green’s functions, their boundary conditions and other
properties are given by Kadanoff and Baym!®; we con-
form to their notation.

Consider the two-particle Green’s function
9(1‘1 = Ty, Ty— Ty) = Gy(r 71, Ty Ty; Ty 7y", Ty 7y") where the
‘times” here are imaginary and ordered from 0 to —i8,
The Fourier transform with respect to the space
variable and series with respect to the “time” variable
gives the coefficients g(Q, wy) where the boundary con-
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ditions require that wy=irB"'N where N is an even
integer. For N> 0 these coefficients define by con-
tinuation a function ¢ (Q, ¢) which is analytic in the upper
half ¢ plane. It has been shown that'¢

S@, w)=- (m)"![1 - exp(- w)]" ReG (Q, ").

Thus, S(Q,w) can be obtained from the Fou.ier co~
efficients of a certain two-particle temperature Green
function.

(C1)

An activity expansion of the coefficients can be car-
ried out with the aid of operator relations {(or diagram
techniques), similar to those used in the body of the
paper. However, it is customary to consider the equa-
tions of motion for the Green’s functions. Since these
form an infinite hierarchy of equations they cannot be
solved exactly and various methods of approximating
the solutions have been proposed, Here, we use the
conserving T matvix approximation® which yields an
approximate one-particle Green’s function G and a par-
ticular two-particle correlation function which obey all
the conservation laws and which, as we show, yield
results exact to second order in the activity.

The consevving T approximation for G, is defined by
Eq. (60) of Ref. 8. There, an integral equation is
formulated for the quantity L(12,1’2’)=G,(12,1'2’)

- G(11')G(22’) in terms of G and a generalized T matrix
for which the standard two-body 7T matrix is the z —~ 0
limit, (In the present calculation the lowest order
suffices; we have shown previously in a paper on the
third virial coefficient how to use the next order of this
T matrix. ?) The G to be used in this integral equation
(and in the equation defining the generalized T matrix),
is that associated with the self-energy given by the T
approximation; compare Eqs, (C6) and (C7) for the
Fourier coefficients,

We follow the approach of Leribaux and Pope!’ who
showed how to obtain the terms of order z% in GQ,wx).
[However, in their actual calculation certain approxi-
mations were made which precluded attainment of the
exact result for S,(Q, w). ] These authors showed that,
to order 2%, the coefficients g (Q, wy) can be obtained
from the flrst iteration solution of the integral equation
for L(12,1'2’). The corresponding G, contains three
terms which must be transformed to obtain the following
first iteration contributions to G (Q, wx),’

g(HF)(Q wN) 17'5-1/ (2”}32 G(P,YM)G(p"’Q 7M+wN)’
c2)

g(T)(Q ww)_-lﬁ'zﬂ'if 2m)¢ M? G(pia7M1)G(pzy)’M2

X (0102 | Tyy, + Vi) lp1 +Q,p:-Q)
XG(pi +Q’ ‘)’Mi + wN)G(PZ = Q, YMZ - wN); (C3)

3 yn dpy dps d|
GPQ wx) =i f B v 22wy GOt Vi)

XGp +Q, Y, + wy)G(p,, ')’uz)

XG(py + Py~ Ps, Yuy T Yuy = Vuy)

X @102 | T(vu, + vu,) | P1 + P2 = P, Dy)

X (01 + P2 = P, 03 + Q| T+ yu, + W) | P2, by + Q)
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XG(p!}’ YMS)G(p3+Q3 7M3+wN)’ (C4)

where yy=ir8 M+ p, (M=0,£2,---
+1,+3,. .. for fermions); then,
GReN=G""QuN+G TQuN+G (@ wn).
(C5)
Note that the third term, corresponding to (C4), was

introduced to guarantee conservation of particle num-
ber, momentum, angular momentum, and energy.

for bosons,

The one-particle Green’s function coefficient here is

GO, vi)=lbyu=1/2m =220, )™ (C6)
where the self-energy is
L, vi) =7t lim —P—( 55 % (o)
X P | T+ v4) PPV GO, vir)- €

The summations in (C2), (C3), (C4), and (CT7)
may be performed by a method of complex integra-
tion if we assume that (pip,!7T(Z)Ip;1P,) is analytic
for nonreal ¢ and bounded as || —~ <, In some cases
this introduces certain integrals which involve T
evaluated on the edges of the real-axis branch cut. In
every case there emerges a power series in z arising

from the p which appears in y,,. For example, (C7) to
lowest order is
ey ) (_ BP'2>
E (p: )’M) =28 (271,)3 exp om
X (pp’| Tlyy +5"/2m)|pp’)s. (C8)

In order to obtain the first two terms in an activity
expansion of the first iteration result for the coeffi-
cients, g (Q, wy), it is sufficient to replace everywhere
the generalized T matrix by its low activity limit (the
ordinary T matrix), and to neglect completely the self-
energy occurring in G or to replace it by its low activity
limit which according to Eq. (C8) is of order z as
z —~ 0. On performing the summations in (C2), (C3),
and (C4), the coefficients G(@Q, wy) are given by the result-
ing power series in z, Thus, the lowest order contribu-
tion to each of (C2), (C3), and (C4) is obtained by re-
placing G by GV (p, v,,) = (v~ p?/2m)". There will be
a contribution of order z to g (Q,wy) coming from (C2)
only: This gives the ideal gas result. We seek the con-
tribution of order z? which comes from each term in
(C5): In (C2) one must use (C6) for G; in (C3) and (C4)
G must be replaced by G,

The calculations for (C2), (C3), and (C4) require ex-
treme care so that the correct terms of order 2% are
obtained. Then, reduced T matrices are introduced
according to (A6) and the branch cut integrations are
performed with the aid of (B1) and (A8). Finally, the
center-of-mass momentum integration is performed
using (B2) and (B3).

The three results thus obtained are inserted into
(C1) to produce three contributions to S,(Q, w): Call
these ;P 5, and $,;"T, Comparing these with
the quantities derived in the main text we see that

SI(HF) - (277)-1}\3[)((0) + ¢(0) + X;)Ti) + ¢(ET1) +X(72)]’

(C9)

R.E. Johnson and N.K. Pope 971



(C10)
(C11)

Si(T): (2,”)-1AS[¢LT1) + XI(‘)T“ + ¢(7‘l)],
St(TT) — (2”)-1A3[X(TT) + ¢(TT)].

Thus, the conserving T approximation yields precisely
the correct result for S;(Q, w): Note that it was essen-
tial to include the extra term (C4).
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A class of conservative one-dimensional diffusion processes is discussed which satisfy a delta function initial
condition. A similarity relationship exists between the space and time variables. This class contains as
special cases three well-known diffusion processes and another one that very recently became of interest in

the theory of superradiant emission.

I. INTRODUCTION

Recent studies by Narducci, Coulter, and Bowden,!®
and by Narducci and Bluemel? of superradiant emission
processes have led to a very useful and elegant de-
scription of such processes by means of the single
Fokker —Planck equation, 2

[2(1+ 2)G],, -[(1+ N2)G],=G,, 2>0, t>0,

N=2(r+1), r=Dicke cooperation number, for the
density function G(z,#). The corresponding lowest order
equation?

2G,,+ (1 -N2)G,~-NG=G,, 2>0, t>0, (1.1)
which is also of the Fokker —Planck type,

[2G],, -[(1 + N2)G],=G,, 2>0, t>0,
plays an essential role.

As verified in Ref. 2, Eq. (1.1) has the particular
positive solution

Golz,t)=b"'(t)exp(~ &), £=2zb"X1),

in the domain z> 0, #> 0, with

(1.2)

b(t) = N"*(exp(Nt) - 1), N#0.

This function G,(z,¢) has two important properties,
namely,

7 Gylz,dz=1,
0
and
Gy(z,t) ¥0 as ¢ ¥ 0 for fixed z (0, ).

It represents an example of a conservative solution of
a special parabolic equation corresponding to a com-
pletely concentrated initial state or, loosely speaking,
under a delta function initial condition. In the work of
Refs. 1 and 2, this solution describes the lowest order
approximation of the process of spontaneous emission
from the state of complete inversion.

In general, a solution u(z,{) of the one-dimensional

autonomous parabolic equation
A(2u,, + B(2u, + C(2lu=1u, (1.3)

in the domain 2> 0, ¢> 0, is called conservative (or
norm preserving) if u(z,t) € L'[0,«) for every ¢>0
{Riemann integrable on [0,)} and if in particular,

Osfﬂou(z,t)dzsconst< w0,
0

973 Journal of Mathematical Physics, Vol. 17, No. 6, June 1976

The function G(z,¢) given in (1.2) has another re-
markable property. It can be written in the form

Golz, D=AEZE , AE)=exp(~£), £=2b™(t),

i.e., there exists a similarity relationship between the
original independent variables z and ¢, and

fo“’ Golz,t)dz= [~ fE) dE.

Conservative solutions involving a more general
similarity relationship between z and ¢ exist for other
parabolic equations. For example, the Fokker —Planck
equation

[ou exp(- Bz)],e— [~z pu exp(~ B2)],=u,, a>0, B>0

(which reduces to the heat equation as 8+0), has in z
>0, t>0, the particular positive conservative 6 func-
tion initial condition solution

u(z, 1) =b"'(¢) exp(38z, - £2),
with
£=28"[exp(382) —1167(), b(t)=(4at)'/?, f(£)=exp(~ £2),

In this note we are not going to discuss the general
situation. Rather we are going to concentrate our atten-
tion on a particular class of equations (1. 3) which con-
tains three well-known diffusion equations as special
cases, one of which in turn contains Eq. (1.1) for a
special choice of parameter values. For this class we
shall establish the conservative § function initial condi-
tion solution which is of the form

ulz, t)=fE)D2(t), £=2b"()>0 in 2>0, £>0,

This particular class of parabolic equations plays an
important role in physical as well as biological diffusion
processes.

Il. GENERAL CONDITIONS

Although the objective of this paper is the discussion
of a special class of parabolic equations (1.3), it is
nevertheless useful to present briefly conditions on the
coefficient functions A(z), B(z), and C(z) of the
parabolic equation

A2, + B(2)u, + C(u=u,, u=ulz,t),

2.1
A(z)>0, z>0, ¢>0, 2.1)
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under which solutions of the form
u(z,t)=fE)b71(F)
with
£=2b(#)>0 inz>0, t>0
exist. If f(t)e L'[0,»), then
fo”u(z,t)dz=fo°°ﬂg)dg.
We assume that A(z), B(z), and C(z) are continuous in
(0,»), and that b(¢) is a positive once continuously dif-
ferentiable function in (0,~). Equation (2.1) is a
Fokker —Planck equation, i.e., transformable into
[A(2)d],, - [Bl2)ul, = u,
if and only if
C(z2)=PB(2) - A"(2).

If this is the case, then B=2A’ - B, With Eq. (2.4) one
associates the function #(z) = A-'(z) W'(z) (which is due
to Hille®) with

(2.4)

W(z) = exp[- | * B(s)A"\(s) ds]. (2.5)
It satisfies the ordinary first-order equation
A(z2) + [B(z) - A’(2)]h=0, (2.6)

and plays a fundamental role in the semigroup theoreti-
cal approach to the parabolic equation problem (Feller?),

Substituting (2. 2) into (2.1), we obtain the differential
identity
Rf" +Sf + Tf=0, 2.7
with R=A, S=Bb+ zb', T=Cb*+ bb’. A prime signifies
differentiation with respect to ¢ and £ for the functions
b(#) and f(¢), respectively. For the identity (2, 7) to
specify f as a function of £ only, it is necessary and

sufficient that the ratios SR and TR be functions of £
only, i.e., that

(2.8)
(2.9)

(Bb+ 2b")A™ = o, (8),

b(Ch + b")A™ = a, ().
Then (2.7) changes into a differential equation for f(£),

'+ ay(E)f + ag(€) f=0. (2.10)
From (2. 8) and (2.9), we obtain the identity

Eag(E) - oy (8) = £2(2C - B)A™,

Since its left-hand side is a function of £ only, its right-
hand side must also be explicitly independent of z, i.e.,
the factor of £-' must be a constant k< (—=,«) and,
hence,

fag(E) — oy (B) = k™, (2.11)
This leads to the condition
RA(z)=22C(2) — zB(z) (2.12)

on the coefficients A, B, and C of Eq. (2.1) for solu-
tions to be of the form (2.2) in which £ is given by (2.3).
Furthermore, the relation (2, 12) makes one of the con-
ditions (2. 8) and (2. 9) superfluous. Using (2. 8) and
setting there z=>5, we obtain the first-order equation
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for the function b(¢),

bb’ + bB(b) — o, (1)A(b)= 0. (2.13)

1. A SPECIAL CLASS OF PARABOLIC EQUATIONS

We consider now Eq. (2.1) with the coefficient
functions

A(z)= az*', a>0, re (-»,),
B(z):,Blz"+Bzz, 61'2E<—°°,°°),

Clz)=(ak+ B2+ B, ke (~w»,x),

(3.1)

which satisfy the condition (2.12). The corresponding
equation is of Fokker —Planck type if and only if the
parameter % in the coefficient C(z) satisfies the equation

ak+ B, =MNB, —a(l+ )], (3.2)

which is independent of the parameter 8, occurring in
B(z) and C(z). We restrict our attention to this Fokker —
Planck case.

Using the Hille function #(z)=A"(z) W(z), with W(z)
given by (2.5), which takes here the special form

a-al alg, .
h(z)= 21" B exp (———z—z”>, A#1, (3.3)

1-2
and

-1
R(z)= 2% B8 a=1

,
we can characterize the properties of the z boundaries
7,=0 and r,=+ » (Feller,* p. 516):
(1) <1, 7, is regular if 1+ 2x< ™18, <2+ X for
every 5,
7, is exit if 2+ A< a7'B, for every B,,
7, is entrance if a8, <2+ X for every 8,,
7, is natural;
(2) x> 1, 7, is natural,
7, is regular if 2+ A< g8, <1+ 2x for
every f3,,
7, is exit if o~1B, <2+ A for every 8,,
¥, is entrance if 2+ A< ™18, for every B,;
(3) A=1, 7, and 7, are natural.

Since we are interested in conservative solutions that
satisfy a 6 function initial condition, we may im-
mediately disregard the case A=1. For, if A=1, i.e.,
if both boundaries are natural, the pure initial value
problem for the Eq. (2.4) is unique (Feller,* p.517).
This means that there exists no solution «(z, ) with
u(z,5)=0 as t+0 for ze (0, =) except the trivial identi-
cally vanishing one. Therefore, we consider now the

case r#1, We differentiate Eq. (2.86) once to obtain
h" + A'BW + A"'Ch=0, C=B -A". (3.4)

Furthermore, we look at Eq. (2.10) with coefficients
given in (2. 8) and (2.9). We see that it becomes formal-
ly identical with Eq. (3.4) if

a,(£)=[B(2)b(2) + 2b" (1) ]A"1(2) = A (£)B(&)
=aB, £ + Bt
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a,(£)=b()[C(2)b(2) + b (1)]A-(2) = A" (£)C(E)
= a[(ak+ B)E7 + B,
These two functions satisfy the relation (2.11).

Let us observe at this point that the character of the
boundaries 7, =0 and 7, =+« is completely independent
of the parameter B,, i.e., that the nature of the cor-
responding solutions is independent of 8,. Therefore,
instead of B, in the expressions for «,(£) and a,(£), we
use a new parameter x which will be disposed of later.
Then

o, (§)= a8, + kE]
and, in particular,

a()=aB +x). (3.5)

The solution f(£) of (2.10) is now identical with the func-
tion 7 of (3.3) if B, is replaced there by «, i.e.,

=1

- gl-l), A1

f(E) - g10l-¢!"151 exp (_ T
(This solution can also be found in Kamke,® C. 2+215.)

Furthermore, observing (3.5), we obtain from (2.13)
the equation

b = kb — B,b,
which has the solution

[k(1 = 0] g =0,

b(t)=
{kB3! - kB3t exp[~ (1 - NGV g, 20,

To have now b(¢) positive for ¢> 0 as required earlier,
we set
k=a(l-2), a>0.
This then gives us the positive solution
u(z, )= b (£) £ "B exp(~ £1%), A#1, 2>0, t>0,
(3.6)

of Eq. (2.1) with coefficients (3.1) for the Fokker —
Planck case with

[a(l - N2 2™ 8, =0,
{al =08 - a1 =N B exp[- (1 - )\)th]}“""-l,
B,#0,

The solution (3. 6) is of the form (2. 2) with &= zb™'(¢).
The function

AE) = g1-e~8y oxp (= £1),

appearing in (3. 6) will be in L}(0,), i.e., the solution
(3. 6) will be conservative, if and only if (2+ A - a™8,)
X{(1 = A)"1> 0. This is easily verified. It is only necessary
to introduce the new variable x = £'** and to observe that

b(t)=

A#1,

J AE)de=[1-2|* f T e B TC WA exp(— x) dx
0 (o}

24+ 1~
— _ a1
=[1-1| r<—————1-1_h >
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if the argument of the gamma function is positive. In
other words, (3.6) is conservative if either A<1 and
a8, <2+xror if A>1 and a™B,> 2+ A. Comparing this
result with the properties of the boundaries 7, =0 and
¥,=+ %, we see that in both cases the conservativeness
interval coincides with the entrance interval of »; and 7,
respectively, independent of the parameter 3,.

In diffusion theory the function A(z) in (2.4) is called
the diffusion coefficient and the function B(z) is called
the drift coefficient. In the special case we are con-
sidering here, A(2)=az*”, B(z)=a[2(1+ 1) - a™'4,]2*

- B,z. We see, therefore, that, for given A#1, the con-
servativeness property of the solution (3. 8) is exclusive-
ly determined by the ratio of the diffusion parameter «
and the drift parameter g,.

Furthermore, the solution (3. 6) has always the
property that

u(z,0)¥0 as t+0 for ze (0,%). (3.7

This can be seen immediately by noting that !t as
(V0 (A#1,2z>0).

The solution (3. 6) corresponds to a & function initial
condition applied at x=0if A<1 and at x=o if A>1,

We finally see that the solution (3. 6) is even singular
if either A>1 or if A<1 and @™'8, <1+ A. This terminol-
ogy is due to Doetsch® and means that u(z,¢) does not
only have the property (3.7), but that also

u(z,) ™0 as z+0 for < (0,),

If A>1, the solution (3. 6) is always singular, indepen-
dent of the diffusion and drift parameters. However, if
A<1, (3.6) will be singular only if the ratio of the drift
and diffusion parameters is sufficiently small. This re-
quires a negative drift parameter if A< -1, For A<1,
the singularity interval of (3. 6) never coincides with the
entrance interval of the boundary », =0 whose right-hand
end point is 2+ A, It may or may not, however, cover
part of the regularity interval of 7,, according as A< 0
or 0sa<l,

Singular solutions are of interest in the general
initial -boundary value problem’ with perpendicular ap-
proach to the boundaries of the domain 2> 0, ¢> 0,
which excludes the approach to (0,0), The existence of
such singular solutions is rather disturbing within the
framework of diffusion theory and its applications.
Whereas the existence of 6 function initial condition
solutions renders the pure initial-value problem non-
unique, the existence of singular solutions makes the
general initial-boundary value problem nonunique.

IV. SPECIAL CASES

The results of Sec. III for the Eq. (2.1) with co-
efficients (3.1) and % satisfying the Fokker —Planck
condition (3.2) cover the following well-known equations.
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(1) Feller equation®: x=0, k=-a™'8,, k=a< 0,

ulz, D)= b"(H)E=*"8 exp(= £),
t if :0,
b(t)= { * s
af; (1 - exp[- B,¢]) if B,#0.

5: Zb-l(t))‘

(4.1)

Its solution (4.1) is conservative if a8, <2 and singu-
lar if o8, < 1.

Equation (1,1) of Ref, 2 is clearly a special Feller
equation: a=8,=1, B,=~N, k= -1, k=1, Its solution
is conservative but not singular.

{2) Heat equation: A=-1, B =£,=0, k=0, x=2a>0;
wl(z, =0t exp(- £2), E=2zb1), 4.2)
b(H) = (4at)t/?.

Its solution (4.2) is conservative but not singular.

(3) Kepinski equation®: =0, a=wn", B=n{m+1),
B,=0, k=-(m+1), k=n">0,

n'lzuzz + 1+ m)uzz Uy,

976 J. Math. Phys., Vol. 17, No. 6, June 1976

or, in Fokker—Planck form,

(ntzu],, - (2 (1 - mul,=u,,

u(z,t)=b1()emexp(~ £), £=2b"1(¢),

b(t)=ntt. 4.3)

This equation is another special case of the general
Feller equation. Its solution (4. 3) is conservative for
m<1 and singular for m <0,
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The continuous subgroups of the Poincaré group, classified into conjugacy classes in a previous article, are
here classified into isomorphism classes. For each isomorphism class of Lie subalgebras all invariants are
found, with a distinction made between Casimir operators (polynomials in the generators), rational
invariants (rational functions of the generators), and general invariants (irrational and transcendental
functions of the generators). All results are summarized in tables. The meaning of nonpolynomial invariants

is briefly discussed and illustrated in examples.

1. INTRODUCTION

In a previous paper! (further to be referred to as I)

a classification was given of all continuous subgroups of
the Poincaré group (the inhomogenecus Lorentz group).
Representatives were given for each conjugacy class of
subgroups, where conjugacy was considered under the
group of inner automorphisms, more specifically under
the connected component of the Poincaré group (proper
orthochronous Poincaré transformation).

In the present article we continue the investigation
of the properties of the subgroups of the Poincaré
group. First of all we present all isomorphisms between
different subgroups, i.e., modify the tables of conjuga-
cy classes, found in I, into a table of isomorphism
classes. Secondly, for each subgroup we find all of its
invariants, or to be more precise, find a basis for the
algebra of invariants, such that all invariants can be
written as functions of those found in this article. The
term “invariant” in this article is to be understood as
a generalization of the concept of a Casimir operator
which is a polynomial in the generators and thus an
element of the enveloping algebra of the corresponding
Lie algebra, commuting with all the generators of the
group.

We distinguish between three types of invariants. The
first are Casimir operators, as defined above. The
second can be called harmonics or rational invariants;
they are also left invariant by transformations of the
group; however, they do not lie in the enveloping
algebra, but rather in the quotient field of the envelop-
ing algebra (i.e., they are rational functions of the
generators). Finally, general invariants will be more
general functions of the generators. The significance of
Casimir operators is clear —in group representation
theory they can be used to label irreducible representa-
tions and to split reducible representations into ir-
reducible ones. In physical applications the Casimir
operators are usually associated with quantities char-
acterizing a certain physical system, rather than a
specific state of this system. It is our opinion that the
more general invariants can be used and interpreted in
a similar manner.

The present article is part of a series in which we
study the subgroup structure of groups of importance in
physics, analyze their properties, and consider
applications of such a subgroup classification. 2~® Much
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of the motivation for this study was presented
earlier.'~®

Fields associated with enveloping algebras of Lie
algebras, relevant to the discussion of harmonics that
are not Casimir operators, were discussed e.g., by
Gel’fand and Kirillov’ and Chow.?® A relevant discussion
of an operator calculus involving nonpolynomial func-
tions of operators is given, e.g., by Maslov.®

In Sec. 2 we discuss the general methods which we
use to classify subalgebras of the Poincaré Lie algebra
into isomorphism classes and also to calculate invari-
ants of these algebras. Section 3 contains the main
result, namely a list of all subalgebras of the Poincaré
algebra with their invariants. The algebras are
organized first by dimension and then for each given
dimension they are divided into isomorphism classes
characterized in each case by a certain standard
algebra. Physical comments on the subgroups and their
invariants are concentrated in Sec. 4.

2. GENERAL METHODS AND COMMENTS

Our starting point is Tables III and IV of I in which
we list representatives for all conjugacy classes of
continuous subgroups of the Poincaré group. Conjugacy
was considered under the proper orthochronous
Poincaré group. In this article we shall allow for a
larger group of automorphisms, in that we also include
parity and time reversal in the group.

We wish to organize all the subalgebras into iso-
morphism classes and also to find all invariants of the
subalgebras. The invariants themselves provide a
useful tool for identifying isomorphisms.

The method to be used for calculating invariants of
Lie algebras consists of reducing the problem to that
of solving a set of linear first order partial differential
equations. The method goes back to the original work
of Lie, has been discussed in detail and applied to all
real Lie algebras of dimension d< 5 in a previous
paper, '° and has recently received considerable atten-
tion in the physical literature.!-!®* We shall just sum-
marize a few points.

Consider a real Lie algebra L with a basis {X,, . . .
X} satisfying the commutation relations

[Xi,Xk]:tE CLX,, ik,l=1,...,n. (1)
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Consider functions f(x,, . . . . ,x,) of n real variables
and construct the differential operators

] (2)

X, = 2 C’kxza

1,k=1

acting on the considered space of functions. Obviously
the operators X, satisfy relations (1) and thus provide
a representation of the Lie algebra. We must now find
all independent functions F(x,, . .. ,x,) satisfying

X, Flx,...,x,)=0, i=1,... ,n. (3)

If a solution is a polynomial in x;, then we obtain a
Casimir operator by first symmetrizing the polynomial
with respect to all x, involved and then replacing x, by
the generator X; {it is easy to check after symmetriza-
tion the requirement X, Flx,, .. . ,xn)=0 is isomorphic
to the requirement [X,, F(X,, . . .,X,)]=0}. If a solu-
tion is the ratio of two polynomials, then we sym-
metrize the denominator and numerator separately (the
denominator must commute with the numerator) and
then again replace all x; by X, and obtain rational
invariants, General invariants are obtained from gen-
eral (not necessarily polynomial or rational) solutions of
of Egs. (3) in an analogous manner.

Let us note that each of Eqs. (3) can be solved in a
simple manner. Indeed, the partial differential equation

E Cik X, T a F=0 (4)

kyi=1

leads to the subsidiary equations
dxy  _ _dxy _,,_ 4%,

21C§1x1 2:Chx; D) Icérrxl

Clearly Egs. (5) can be replaced by a set of equivalent
equations, putting

(5)

ds
S

ds d(a1x1+°°-+a X,)
s (6)
s 21,60C1p %1

where a,, . . .,a, are arbitrary constants. This allows

us to choose # linearly independent combinations of x,,
.,¥, in a convenient manner, so as to reduce the
matrix of coefficients C! =(C,)} to a standard form, in
particular to the Jordan canonical form. This reduces
Egs. (5) to a manageable form and thus provides a

general solution of Eq. (4).

It is well known that the space of all invariants of a
semisimple Lie algebra is spanned by a set of indepen-
dent polynomials (the Casimir operators). The same
can be shown to be true for nilpotent algebras. An even
{odd) dimensional Lie algebra must have an even (odd)
number of functionally independent invariants.

As an example of the method consider a three-dimen-
sional Lie algebra with the basis {Y,,Y,,Y,} satisfying

[Yn Yz]: 0, [Yz’Ys]: Y1+PY2, [Ys, Y1]:

p>0 (M

-pY+ Yzy

(this algebra is isomorphic to P; , of I). Following (2),
we have

0
:(Py1“yz)m y Vo= pya)s— a,
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TABLE 1. One-dimensional subalgebras.

Range of parameters

Notation Generator

under /9;, under /
Py 6 coscLy +sincK; O<c<wm, c=m/2 0<c<7n/2
Pyp 10 L,
Py 9 K
Py Ly + K,
Pys5 g Py— Py
Py5 4 Py
Pys 10 P,
Py 3 andPl2 94 Lg+e{Py+P;) e=x1 e=1
P12 25 Ly+aP, a>0
1312'26 Ly+aP, a=0 a>0
Pis 15 Ky +aPy a>0 a>0
Py, Ly + Ky +Pg+ Py
P1425 andPMzG Ly +K +€Py e==x1 e=1

(8)

0
=- (pyl—yz)a_j_)—l_ -(y

Clearly Y, F(y,y.y,)=0 (=1,2) implies that ¥ does not
depend on y,. The equation Y,F=0 provides us with the
subsidiary equations

+.by2)5;)—-

dy, __ady, ds (9)

J 28 Rl P »y1+Pyz s

We follow the procedure (8) and put
@ d( 1y1+a2y2) (10)
s oy(py, —¥2) + @y, +py,)

To simplify (10), we request that

ds _dlay; +a,y,) (11)
s Maw, +ayy,)

This leads to an eigenvalue problem for A and two solu-

tions for a,, namely,
N=p-i, a;=1, a,=-1, (12a)
and
N=p+i, a,=1, a,=i. (12b)
Equation (9) is thus replaced by the equivalent equation
d(;v1 ) _d o) (13)
p-Dy—1y;)  (p+ady +ivy)
The obvious solution can be transformed into the form
in
¥i+y3) ( zy) =c (14)
so that the general invariant can be written as
(Y24 ¥2) (7"1{7‘;—) e (15)

Notice that Y, and Y, commute and that in any repre-
sentation we can choose a basis where Y, and Y, are
diagonal. The operator (15) can thus be given a perfectly
legitimate meaning and can be used to characterize
irreducible representations of the considered Lie al-
gebra and the corresponding group.

In order to find all isomorphisms between subal-
gebras of the Poincaré algebra, we proceed as follows.
We first consider the algebras of dimension 1sd<5.
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TABLE II. Two-dimensional subalgebras.

Type Notation Generators Ran%e' of parameters Invariants
under /7 ander
Abelian 24, Py Ly, Ky both generators
? Pyy,s Ly +Ky, Ly — Ky; ”
? Py Ly,Py-Py; »
” Pi'l,B Lj,Py; ”
” P!Z,B L3,P0: 7
? Py g K;,Py; »
” 14,7 Ly +K,,Py~Pgy; ”
” Pyys Ly +Ky, Py ”
” 15,5 Py—P,,Py; i
” Py g Py, Py; ”
? Pys,r P, Py; ”
7 Pio,16 Ly+Ky,Ly — Ky +Py; 7
7 Py ys and Py 5 Ly+€(Py+Py),Py—Py; e=x1 e=1 »
” PiZ 21 Ly +aPy, Py a>0 a>0 ”
” 1312,22 Ly +aP3, Py; a0 a>0 ”
7 P31 Ky +aP,,Py; a>0 a>0 »
" Byyno Ly + K +Py+ Py, Py— Py; 7
” P142x and P1422 Ly +K +€Py B — Py; e=x1 €=1 ”
” By Ly +K +Py+Py,Py;
A, Pg q Ks3Lg + Ky none
Pyq 5 coscLg +sincKy; Py — Py O<ec<T 0<c<n/2 »
' c#m/2
Pia,7 Ky Py- Py .
Py 47 K3 +aPy;Ly + Ky a>0 a>0 ”
Pz 13 Ka+aPy;Py— P, a>0 a>0 ”

All one-dimensional algebras are isomorphic and we
denote them by A4, (we leave aside the question of the
different groups corresponding to the algebras). Only
two different two-dimensional real Lie algebras exist:

A decomposable one 4,% A, =24, and an indecomposable
one A, (with basis elements satisfying la,,a,]=a,). Each
of the two-dimensional subalgebras of the Poincaré
algebra can at a glance be identified as 24, or 4,. All
three-, four-, and five-dimensional real Lie algebras
have been classified by Mubarakzyanov'® and we make
use of his classification, which we have slightly modi-
fied for our purposes. Thus, decomposable three dimen-
sional algebras will be denoted 34, and 4, + A4,, inde-
composable ones 4, |, . . .,A; . Among these 4, ,, ...,
A;,and Ay 5, A; ¢ and 4; 4 are individual algebras, and
A% and Af , are actually infinite classes of noniso-
morphic algebras, depending on a real parameter
indicated by a superscript. Similarly four- and five-
dimensional algebras can decompose into sums of lower -
dimensional algebras. The indecomposable ones will be
denoted A, 4,...,Ay 13 and A; 4, ..., A5 4,0 .., 45,40 TE-
spectively. Dependence of a class of algebras on certain
real parameters will be indicated by superscripts. For
further details and standard forms of the commutation
relations we refer to a previous paper. !°

Thus, to classify subalgebras of the Poincaré algebra
with 1<d< 5, all we have to do is to find a basis which
reduces each one to one of the known standard forms
and this turns out to be a simple task.

To our knowledge, no complete classification of real
algebras with d> 6 exists. However, only one eight-
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dimensional algebra occurs in our list. We have six
seven-dimensional subalgebras, all of them mutually
nonisomorphic. This can be seen immediately by com-
paring their largest Abelian ideals and the correspond-
ing factor algebras. To find possible isomorphisms
among the 11 different types of six-dimensional
algebras, we consider the derived algebras. Three of
the algebras are perfect, namely SL(2,C), E(3), and
E(2,1) (these are clearly all nonisomorphic). The other
subalgebras have lower -dimensional derived algebras.
If any among these derived subalgebras are isomorphic,
then the corresponding algebras are candidates for
being isomorphic. If they are indeed isomorphic, then
they must have the same number of invariants and these
must be of the same type. Such cases are then checked
individually, and in all cases occurring it is easy to
prove that the corresponding algebras are isomorphic
or. nonisomorphic, as the case may be.

3. ISOMORPHISM CLASSES AND INVARIANTS

We use the usual physical basis for the algebra of the
Poincaré group, i.e., the rotation generators L, the
boosts K,, and the translations P, (:=1,2,3, #=0,1,2,
3). We write the commutation relations in the form

Ly L=emly, (LK l=epK,,

[KgyK]z_eikl [Ll’Pk] klPl’

(K,,P,]=0,,P,, [K,P]=P,, (16)
(P u’Pu]=0, [Li’Po}
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TABLE ML Three-dimensional subalgebras,

Type Notation Generators Range 'of parameters Invariants
under /7 | under
Abelian 34, Pyo,4 Ly+ Ky, Ly — K5, Py~ Pg; all generators
P12,5 L3;P0’P3; »
Pm,a K3, Py, Py s
p14,4 L2+K11P0—P3xP2§ )
Pis, Py—Py,P,,Py; -
P53 Py, Py, Py; ”»
Pys g Py, Py, Py; "
Pig 11 Lo+ Ky Ly —Ky+ Py, Py— Py; »
Py Ly + Ky — 3(Py+Py), Py — Py, Py; ”
4,94, Pg g (K33 Ly + K ) S (Py) Py
Psa’s (Kg;Po—P3)\lf (L';) L,
P35 (K33 Py = P3) D (Py) P,
P31 (K3 +aPy; P~ P)b (P) a>0 a>0 P,
Ay Piss Ly+Ky,P;Py— Pg Py~ Py
Weyl algebra) Py, Ly + K, Py +bP; Py~ P, b= 0 >0 Py— Py
Py, and Pjg 5 Ly+ Ky —€Py,Li —Ky+bPy— €¢Py;  b>0, =21 b>0, €=1 P - P,
- Py-P,
Pm,Mande15 Lo+ K —€Py, Ly —K, — €Py; €=+1 €e=1 Py— P,
~ Po— Py
Py, N Ly +K, - §(Py+ Py, P;;Py— P, P, - P,
Pyy5and Pyy g Ly +K{—€Py, P3Py~ P, c==+1 ¢ Py~ Py
Pyt Ly + Ky =3 (Py+Py) , Py — bPy; b=0 b>1 Py~ Py
~ Py—Py
Piy,gpa0d Pyyyg Ly + KBy —€Py, Py —bP;Py— P, b#0, e=+1 b>0, €=1 Py— Py
= - Lo +Ky
A P K, +aP;L,+K,,Py~P >0 - -
3,2 8,14 staP3ly + K, Py~ Py a a>0 (Py~ Py) exp < a(Py—Py)
138,1@ Ky ~aPy+bPy Ly + K ,Py— Py a>0, b= 0 a>0, b>0 Py - P3) exp o LatK
b(Py— Py
Li— Ky
A3 Pq g KysLy + Ky, Ly — Ky I, 7K
'~ 1
oo T) Py Py
Ppr Kyily + K, Po— By L+ K
~ Py— P;
Py 15 Ky+aPy;Ly + Ky, Py~ P, a>0 a>0 #‘kf
Az g Py, 4 coscLy +sincKy;Pg, Py O<c<rm,c=n/2 0<c<7u/2 P} -p}
1,1 ‘
(£a,1) P4 K33 Py, Py Pg—PBZ
IN’m'Q Ky +aPy; Py, Py a>0 a>0 P} - P}
Az Py, Ly;Ly+ Ky, Ly — K Ly + K+ (Ly - Ky
(E2)) Py coscLs +sincK,:P;, P 0<c<m, c®7/2 0<c<n/2 Pl +pd
Pue Ly;Py, Py P2+ P
Bogand Py Ly+e(Py—Pyily +K, L~ K, c=3 1 e=1 Ly +E P+ L —Kp)?
Py isand Py g Ly —c(Py+ Py)iPy, Py €=+ 1 €=1 P} +P§
Py 4 Ly+aPyP,, Py a>0 a>0 P!+ P}
Py s Ly +aPy;Py, Py a=0 a>0 PI4+P;
A5, P, coscLy +sincKyLy + Ky, 0<c<r, 0<c<w/2 [y - K% + (L, +K)%)
(L1 _KZ) +7 (Lz +K1) ; tanc
66) L~k o772 X<Lx—K2—i(Lz+K1) ’
p=tanc>0
Ay g Py 4 L3, Ki, Ko LK - K}
SU(,1)
4,5 Py 4 iL1s Loy Ly L+ L3 +15
SU(©2)
The basis used in I was: Under parity II and time reversal T we have
B, =2L B,= - 2K B,=-L,-K
e : 5 i S 1P,=~pP,, 0P,=P, IK,=-K, [IL,=L,, (18)
B,=L,~-K B =L,~K B,=L,+K
LT PR T ST T TP;=~-P,, TP,=P, TK,=K, TL,=-L,. (19)
X, =3(P,-P;), X,=P X,==-P,, X,=%:(P,+P,). . . .
1=2(Bo = Po)y Xp=Py, s v Xe=2(Pot Py We shall also have the opportunity to use a dilatation
(17)  operator D, satisfying
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TABLE IV. Four-dimensional subalgebras.

il

Type Notation Generators Ranﬁg of parameters Invariants
under /7 under /?
44, Prsy 1(}.1’1,172.1’3; Py, Py, Py, Py
A O2A, ) I D TET AL AR ) P, b,
Ay (DA Py g Ly — Ky, Py3Py— P))® (L, +K;) Ly + Ky, Py~ Py
Pyy,2 - (L, +Ky, Py;Py— P3)D (Py) Py,Py-Py
Piosand Byy 1y (Ly—Ky— cPy, Py;Py— Py €=21 e=1 Ly +K, +€Py, Py~ P,
- D (Ly +K, +€Py)
Pyy,q0 (Ly+K; = 3P+ Py), P;;Py— Py) Py, Py— Py
@ (P,)
Ay 2@ 4 ﬁs.“ @Ky +aPy;Ly + K ,Py—Py)D (P)) a>0 a>0 Py, (P~ Py)% exp —2;52—+-%-
0 - <3
+
Ay 39 4 Py, 4 (K3;Lp + Ky, Py~ Py) D (Py) Pg,?n—_z;;%
A DA, Py 4 (K33 P, Py) D (L) Ly, P} - P}
Py, (K33 Py, B)D (Py) P, P} -P}
-?513,10 (K3 +aPy;Pg, Py)D (Py) a>0 a>0 p,,P¢-p}
A, 6D 4 Py, Lyl — Ky, Ly + K)© (Py— Py) Py— Py, Ly - K+ (Ly + Ky
Py, (L3:Py, Py B (K;) Ky, PP +P}
Py (L3; Py, Py} (Py- Py) Py— Py, P+ P}
Py 3 (Lg; Py, Py B (Py) Py, P!+ P}
Py 4 (Ly; Py, P) D (Py) Py, P} +P}
Py rand Py gy (Ly+e(Py+Py)iPy, Py e=x1 e=1 P,—P,,Pl+P}
N @ (Pg - P;)
Py 3 (Ly+aPy Py, P)® (Py) a>0 a>0 P, P} +P}
P14 (Ly+aPy:Py, P)® (Py) a=0 a>0 Py, P} + P}
Ay,5D A4, Py Ky, Ky, Ly) © (P3) Py, K +K} - L}
Az oD A4y Py Ly, Ly, L) D Py Po, L{+ L5 +Lj
Ay Py (Ly + Ky, Py+ Py; Py~ Py, P)) Py— Py, Pj - P{ - P}
73,0,7 Ly+Ky— 3(Py+Py) Ly~ Ky +aPy; a=0 a>0 Py~Py P} +Pl_P¢+2(Py—DPy)
Py— Py, Py X (Ly + K| — aPy)
Py Ly+Ky - $(Py+ Py, L, - Ky; Py—Py, P} + P} P}
Py-P3 Py +2(Py—P;) Ly +Ky)
Pia,1 and Py g Ly +K{ — €Py, Py+Py;P, P —P; €=x1 e=1 Py— Py, P{ - P} - P}
~ Li—~Ky
A, Py, Ky+aPy Ly + Ky, Ly - Ky, Py—Py; >0 a>0 P _p Po—P3)°
et T X ex LK
P|"P-p
Ly~ Ky Ljy+K;
Apg, Py y K3;Ly~ Ky Ly + Ky, Py— Py Pl—Pz’PZ—P1
2=h=1 0o—P3 Py~ Py
ab . (Pg—P3)’
A%l P, Ly - tancKy; Ly — Ky, Ly + Ky, O<e<m O<c<n/2 T gD
a=b=tanc Py— P, c# /2 =2 C
[y~ Kyl + Ly + K )]
% (L1 — Kp) —i(Ly +Ky) \itame
LK) +illy + Ky}
a=—tanc, Py Ly - tancKy; Py~ P,, Py, P, O<c<m 0<c<n/2  P{+P},
b=0 c#* /2 it
_ o [ Py —ip,)itexc
(Po~Py) [P1+iP2]
Ao h=0 Pg g K3, P3Py — Py, Ly +K; none 7
Py s Ky, P{+bPy; Py~ Py, L, + K, b0 b>0 none
FERY Ky+aPy,Py;Py—P;3, Ly + K, a>0 a>0 none
Py i3 K3 +aPy, Py +bPy;Py— Py, Ly+K, a>0, b=0 a>0, b>0 none
Ao P, ;and Py LyLy +K - ¢Py,Li— K, —eP;, e=%1 e=1 Py— Py, 4cLy(Py~ Py
Py~ P, + (Ly + Ky — €Py)?
+(L) ~ Ky ~ eP,)?
Ag 1o Py 4 Ly, Ky Ly + Ky Ly ~ Ky none
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[p,L,}]=[D,K,]=0, {p,pP,]=-P,.

(20)

The invariants of the Poincaré group are, of course,
well known. Within the enveloping algebras there are
just two, determining the particle’s mass and spin:

m2=P§~Pf-P§—P§,

W:WHW”',

(21)
(22)

where W, =¢,,,M,, P, is the Pauli—Lubanski spin

TABLE V. Five-dimensional subalgebras.

operator and My, =K,, M,,=¢,,,L,.

Let us now proceed to describe the results summar-
ized in Tables I-VII. In all tables the notation P, , re-
refersAto one of the splitting subalgebras of Table I of I
I and P, , refers to one of the non-splitting subalgebras
of Table IV of I. When listing generators of a sub-
algebra, we use a semicolon to indicate that all opera-
tors to the right of the semicolon belong to the derived
algebra. All parameters denoted by a can be collapsed
by dilatations into a=1 {(a= - 1) if they are positive

Type Notation  Generators Range' of parameters Invariants
under pﬁ under
A3, D24, Pyt (K3;Py, Py © (P)D (Py) P} -P} Py, P
A, (D24, Py (Ly;Py, Py)® (PYD (Py) P} +P}, Py, Py
A D 4, Py (Ly;P1, PY) D (Ky;Py— Py) Pf +pf
AP 4 Pyyq (Ly + Ky, Py~ P3P+ Py, Py) P} -P! - P};Py - Py, Py
& (Py)
Ay DA Pyy (K3, Py;Ly + Ky, Py— P3)© (Py) Py
2="0
Ay Pioo (L, +K;,Li ~ Ky, Py, Py;Py— Py) Py—-Py
As s Py Ly+K~3(Py+Py) Ly~ Ky, Py; B,— P,
’ Py- Py, Py
Aty Py Ly +cotcKy; Py, Py, Py, Py 0<c<r 0<c<r/2 m?, P} - P},
a=-— c#n/2
Py —iPy\!
- - 2c0te 2142
p=0 Py~ Py) (P1+z'P2>
g=cotc
Ly + K;
APy Py K3, Py3Ly + Ky, Ly — Ky, Py— Py P———-Lo—Ps
a=b=1
~ +K,
Al o, Py, Ky+aPy,Py;Ly +K;,L ~ Ky, a>0 a>0 (Py—Py)-% exp (%——T)L)
2 ' 0~ £
R=1 Py - P
Af o0 Py s KLy + Ky, Pg, Py, Py P} -p!- P}
h=0
Py K, +aPy;Ly + Ky, Py, Py, Py a>0 a>0 P} -pP!-P}
(Py— P3)*
‘:g_’f%s bet Py Ly, K33Ly + Ky Ly — Ky, Py— Py (T oy E A
20, b=

TABLE VI. Six-dimensional subalgebras,

dimL’ Notation Generators Range of parameters Invariants
under /} under /7
6 P, 1Ly, Ly, Ly, Ky Ko, Ky 12 _KZ,ZL-K
b P'iZ ;lethL’hpinpbPL L'P,P
6 P Ky, Ky, Ly, Py, Py, Py L3Py +Ky Py — K1 Py,
p§-p} P}
5 Ps o coscLy +8Inchy; Ly +Ky, Ly — Ky, O<e<m 0<e<m/2 none
PO—Pj’P19P2 C# 1r/2
5 Py o Ly;Ly + Ky, Ly — Ky y Py~ Py, Py, Py Py—Py; (Py—Py) Ly
- Py {Ly +Ky) ~ Py (L — K;)
5 By 5 and By g 4Ly +€(Py+Py);Ly + Ky, Ly — Ky, €=+1 e=1 Py-Py,m*+4e (-PsL
Py—Py, Py, Py +Poly — PyK; +P(K))
4 Py 4 (Ky: Ly + Ky, Py, Py, P @ (By) m?, P,
2. p2 p? 2
4 Po g (Lg: Py, P)© (Ky, Py, Py) P{+Py,Py - Py
3 P-(.z K3,P1,P2;L2 +K1,L1 —Kz,Po—p3 none
3 Py, Lo+ Ry, Ly — Ky, P+ Py Py, Py, m?, Pg—P3
Py-py
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TABLE VII, Subalgebras of the Poincaré algebra of dimension d with 7=d =<10.

—

dimL dimZ’ Notation Generators Invariants
7 6 Py g (LhLz’LBtPhPDP.'L)@(PJI) PszP:PQ
6 Py (Ky, Ky, Ly, Py, Py, P D (P;) P§ - P} - P}, LyPy+ KyPy — K Py, Py
6 P, coscLy +sincKy;Ly +K;, Ly — Ky, m?
Py, Py, Py, Py o
0<c<m, c=n/2in %, 0<c<n/2 inf
6 Py Ky;Ly +Ky, Ly — Ky, Py, Py, Py, Py m2
) Py
5 Py, Ly,K3;Ly +Ky, Ly — Ky, Py— Py, Py, Py L3—P0—P3(L2+K1) -PO—P-J(L‘_KZ)
5 Py L3, Py+Pg;Ly +Ky, Ly — Ky, Py~ P3, Py, Py m?,Py— Py,
—PeL—K,P, +KP, + L,P,
8 6 P Ly, Ky;Ly +K(, L, — Ky, Py, P,, P, P. M Ly — (L + Ky =B (L~ K)
2,1 39 423s 19441 294709471 4725473 s L3 PO-P3 1 Po—Pg
9 none .
10 10 Py Ly, Ly, Ly, K{,Ky,K3,Py, P, P, Py m:, W

(negative), without changing the ranges of the other
parameters (in all tables).

All one-dimensional subalgebras of the Poincaré al-
gebras are summarized in Table I. The connected part
of the Poincaré group is denoted by /, (the proper
orthochronous Poincaré group); the extended group, in-
cluding I, 7, and II17 is denoted by /. Some of the al-
gebras in Table I will be mutually conjugated under the
conformal group (e.g., L,+ K, and P,); however, we
shall not go into this here.

All two-dimensional subalgebras are summarized in
Table II. The generators of A, are written as X;Y with
(X, Y]=-vY.

All three-dimensional subalgebras are summarized
in Table ITI. The symbols 4, , (=1, ..., 9) of column
1 correspond to the classification of algebras referred
to earlier.'®'® Thus, A4, , is the Weyl algebra (iso-
morphic to the algebra generated by a linear momentum
p,, 2 coordinate x and a constant), 4, , is the semi-
direct sum of a dilatation and two translations, A,,4 18
the algebra of the pseudo-Euclidean group E(1,1), As.6
the algebra of the Euclidean group E(2). Further, AL,
generates the “screw group” S(3) (see I) and 4, , and
A; 4 are the simple algebras of SU(1,1) and SU(2).

The four-dimensional subalgebras are summarized in
Table IV. According to the classification we use!® twelve
type of indecomposable four-dimensional real Lie al-
gebras 4, ,, ... s 44,1, exist, some of them depending on
one or two parameters. We shall not give their com-
mutation relations here, since they can be read off from
column 3 and the relations (16).

The five dimensional Lie subalgebras are summarized
in Table V. We again make use of an existing classifi-
cation, originally due to Mukarakzyanov,'® discussed in
our earlier article.!®
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Table VI presents all six-dimensional subalgebras.
To our knowledge, no complete classification of real
six-dimensional Lie algebras exists. All such nilpotent
algebras were classified by Morozov'” and some of the
solvable ones have been listed.'® We do not, however,
make use of this partial classification. In the first
column of the table we give the dimension of the derived
algebra. Algebras P, ,, P, ,, and P, , are all perfect.
They are respectively the algebras of the Lorentz group
0(3,1), the Euclidean group E(3), and the pseudo-
Euclidean group E(2,1). Clearly none of these are
mutually isomorphic. The algebras P, , for 0<¢<7/2
are all different, since the three-dimensional factor
algebras {coscL,+ sincK,, L,+K,, L, - K,} for different
values of ¢ are never mutually isomorphic. Algebras
136'5 and 136'6 are isomorphic and conjugate to each other
under IIT reflection. It is easy to verify that 135,5 {or
136'6) and P; , are not isomorphic. The two subalgebras
with dimL’=4, Py, and P, , are both separable and are
clearly not isomorphic. For dimL’=3 we have P, ,and
Py,,,. These are not isomorphic, since Py, , has two
invariants while P, , has none.

All subalgebras of dimension 7,...,10 are sum-
marized in Table VII. Notice that P, , is the direct sum
of the algebra of E{3) with time translations and that
P, , is the direct sum of the algebra of E(2,1) with the
complementary space translations.

4. CONCLUSIONS

Many of the subgroups and their invariants discussed
above already have most interesting applications in
physics. Thus the eight-dimensional algebra P, , figures
prominently in calculations performed in the “infinite
momentum frame, ”*%*° in Dirac’s “front form” of
dynamics?®® and in research on “Galileian subdynam-
ics, »2:22 Notice that the invariants of this group are the
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mass squared m” and a generalization of the helicity
operator
%— Wa
P,-P,

P,
Po_Ps

__Pl_
P, -P,

=L;- (L,+K,)~ (Li-K,) (23)
that has been called “lightlike helicity” (or “light plane
helicity”).?3»?* For mass zero particles with discrete
spin (photons, neutrinos, etc.) the operators L, + K,
and L, — K, are represented by zero; hence (23) reduces

to L.

The seven-dimensional Lie algebra P, , plays an
important role in studies of the dynamical properties
of currents on lightlike (rather than spacelike) planes
and of the relation between current and constituent
quarks, 23-2¢

The six-dimensional subgroups P, , and P,, , have
been used in a study of charged systems in a constant
and uniform electromagnetic field.?® It should be
mentioned here that independent classifications of the
subgroups of the Poincaré group have been provided by
other authors, 303!

We would like to stress that the invariants of the Lie
algebras found in this article should play an important
role in any application of the corresponding algebras.
In all cases where nonpolynomial invariants arise,
these involve mutually commuting operators (e.g., the
ratio of two mutually commuting polynomials). Thus,
we can consider bases for irreducible representations,
in which the corresponding operators are all simul-
taneously diagonal. In particular, representations can
be so realized that the linear operators (polynomials
in the generators) figuring in the general invariants are
represented by operators of multiplication by a function,
rather than by differential operators, Essentially
arbitrary functions of these generators, occurring as
invariants, can thus be given a mathematical and physi-
cal meaning.

To illustrate this point, let us consider as an
example®” the algebras P; 4, P4, and Py ; which can all
be written as

{coscL,+sincK,:L,+K,,L, -K,} (24)

with 0< ¢ <7n/2, ¢=0 or ¢c=7/2, respectively. Fol-
lowing the method of induced representations,® for the
group G generated by (24) we start out with the group #
of translations of a plane (a horosphere) generated by
L,+K, and L, - K,. Next we look for orbits of the group
G in H, where H is the dual of H, i.e., the space of
characters of H. In the case ¢=0 [the Euclidean group
E(2)] these orbits are circles, characterized by a radius
5 where 52 is the eigenvalue of the Casimir operator

(L, +K,?+ (L, -K,?. For ¢=n/2 (the group DO T, of
dilatations and translations of a Euclidean plane) these
orbits are straight lines intersecting at the origin,
characterized by an angle ¢, where arctan¢ is the
eigenvalue of the rational invariant (L, - K,)/ (L, + K,).
Finally, for 0< ¢ <7/2 [the group S(3)] the orbits are
spirals, characterized say, by the distance d between
the point x =1, y =0 and the closest to the right inter-
section (of each spiral with the x axis). This distance
can be directly related to the eigenvalue of the invariant
operator

984 J. Math. Phys., Vol. 17, No. 8, June 1976

—K,) AL, ~K)) +i(L, + K;) {itae
(L, -K)2+(L,+K,) ]{(Li‘KZ)—i(LZ-FKi)}

The applications of general invariants of Lie algebras
in representation theory and in physics will be further
pursued elsewhere. In particular, we are interested in
the representation theory of all subgroups of the
Poincaré group, in harmonic analysis on these groups,
on the special function aspects of these groups and in
applications to the theory of invariant equations.
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All invariant functions of the group generators (generalized Casimir operators) are found for all real
algebras of dimension up to five and for all reai nilpotent algebras of dimension six.

1. INTRODUCTION

An important problem arising in the representation
theory of a Lie group or Lie algebra, and especially in
physical applications, is the determination of the invari-
ant functions of its generators, i.e., of functions of the
generators, commuting with all generators.

From the mathematical point of view their importance
is due to the following circumstances. They can be used
to label irreducible representations of a given Lie group
or Lie algebra and to split reducible representations
into irreducible ones. Further, basis functions for ir-
reducible representations of a Lie group can be con-
structed so as to correspond to the reduction of the group
to a given chain of subgroups. The basis functions in
such a case will be the common eigenfunctions of the in-
variant operators of all the groups in the chain. Invari-
ant operators also play a crucial role in special function
theory. Indeed the entire theory of special functions can
be based on group representation theory"3 and different
special functions occur as the eigenfunctions of different
sets of invariant operators.

In physics, invariant operators of the symmetry group
of a physical system and of its subgroups provide quan-
tum numbers. Indeed, the eigenvalues of the invariant
operators of the entire symmetry group will be the
quantum numbers, characterizing the system as such
(e.g., the particle mass and spin in the case of the
Poincaré group). The invariant operators of subgroups
will then characterize states of the system (its energy,
linear or angular momentum, ete.).*

In other applications, invariant operators of dynamical
groups provide mass formulas, **® energy spectra, ’*®
and in general characterize specific properties of phy-
sical systems.

Another application is related to possible symmetry
breakings in nature. Thus, in an idealized situation a
physical quantity may be characterized by the invariants
of some group. When further interactions, breaking the
idealized symmetry are considered, the same gquantity
may also depend on the invariants of a subgroup or
subgroups.

For further discussion of the applications of invariant
operators we refer to recent literature on the subject.®1*
Let us stress here that in this context the concept of an
invariant need not mean a Casimir operator. Indeed,
the problem of finding invariants will be reduced to that
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of solving a certain set of linear first order partial dif-
ferential equations. These may have polynomial solu-
tions, giving rise to Casimir operators (lying in the
enveloping algebra of the corresponding Lie algebra).
They may also have rational solutions, giving rise to
rational invariants (ratios of two polynomials, both con-
tained in the enveloping algebra), lying in the quotient
field of the enveloping algebra. Finally, the equations
may have more general solutions, including transcen-
dental functions of various types, leading to general in-
variants. Moreover, for some Lie algebras the equa-
tions have no solution and the corresponding group has
no invariant.

The invariants of semisimple groups were determined
long ago'®; their number is !, the rank of the group, and
they may be chosen to be homogeneous symmetric poly-
nomials in the generators.

Invariants have been determined only for a small num-
ber of nonsemisimple groups. For such groups as the
Poincaré group, '® the Euclidean group £(3), or the
Galilei group, !” they are well known. Roman, Aghassi,
and Huddleston*? have given the invariants for a number
of groups containing the Poincaré group; Abellanas and
Alonso*® have corrected some of their results and have
determined the invariants for similar groups related to
the Galilei group. Recently, all subgroups of the
Poincaré and similitude groups of four-dimensional®:'®
and three-dimensional®’ Minkowski space have been
found (the similitude group is the Poincaré group ex-
tended by dilations) and also all the subgroups of the
0(4, 1) de Sitter group.® Their invariants have been de-
termined and the physical meaning of these invariants
has been discussed, 4202

In this paper we give the invariants of all real Lie
algebras of dimension less than or equal to five, and of
all real nilpotent algebras of dimension six. A complete
list of algebras of dimension up to five is given by
Mubarakzyanov??; nilpotent algebras of dimension six
are listed by Morozov. %

Section II describes the method used to find the in-
variants; although well known, it has never been applied
systematically to low-dimension Lie algebras. In Sec. 1II
we give the invariants of all algebras of dimension up to
four; in Sec. IV algebras of dimension five are treated;
Sec. VI gives invariants of all nilpotent algebras of di-
mension six. Section VII contains a discussion of the
results and the future outlook.
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il. METHOD FOR CALCULATING INVARIANTS

From now on we speak of real algebras rather than
groups; the elements of the algebra are just the group
generators X; and the invariants we seek are those func-
tions F(X) which commute with all X’s:

X, FX)]=0, i=1,...,7. (1)

The commutation rules of the X’s are known:
[X,,X,]:%}X,C’:,. (2

Many authors®!+3* have discussed the device, which
we adopt, of replacing the X’s by c-number differential
operators

X{ = Xi :Zxkc):jaxp‘ (3)
Jjk

which have the same commutation rules and act on a
space of continuously differentiable functions of 7 real
variables. The commutation relations (1) are replaced
by the set of partial differential equations

XiF(x)=0 4

which, one hopes, can be solved by standard methods.

Then the solutions of (1) are obtained from those of (4)

by the replacements x; —X,; provided that the factors X,
in F(X) can be ordered so that (4) implies (1).

The solutions of (4) encountered in this paper are all
of the form

F(x) =exp (u"*‘) g, (5)
U, i=1

where the #; are homogeneous polynomials, relatively

prime except possibly for u,,; which may however be

considered relatively prime to u,; the q; are (possibly

complex) constants. Then (4) implies that

u u U Doa,x;u
Xillpo1 n»%ﬁ ny Y dikith g, (6)
Unp Uy =1 U

Now X;u;, for 1 <j<n is a polynomial of the same de-
gree as u;, which according to (6), contains #; as a fac-

tor. Hence it is a constant multiple of «;:
Xith; = auy, l<jsn, ("

1t then follows from (6) that u,, u,., have the same de-
gree and that

n
Xilhpsy = Oglinag —(2—4 aijai) Up- (8)
=

Now we assert that to get an F(X) which satisfies (1),
it is only necessary to replace each polynomial #;(x) in
F(x), Eq. (5), by the corresponding polynomial U,(X),
where each term in U,(X) is completely symmetrized as
to order:

XXy e e oKy = (MI)ILX, Xy oo Xy (9
P
The sum is over all permutations 4,i, - - -, of the inte-
gers 1,2, - -- m; the X, need not be distinct,

Because commutation with X; does not spoil the sym-

metrization, it follows that
xu=v=>[X,, Ul=V, (10)

where the arrow means that the equation on the left im-

987 J. Math. Phys., Vol. 17, No. 6, June 1976

plies the one on the right. Here %, v are polynomials in
the ¥’s and U, V the corresponding symmetrized poly-
nomials in the X’s,

We make the reasonable Ansatz that if [X;, W] com-
mutes with W, then for any complex number a,

[X;, We]=aw*i[X,, W] (11a)

and
[X,, expW]= [X,, W] expW (11b)

In (11a), W will be U;, 1sj<wv; and in (11b), W will be
Ui /U

Taking the commutator [X;, F(X)] and making use of
(7), (8), (10), and (11), we see that F(X) satisfies (1) and
hence is an invariant. OQur proof is a generalization of
that given for rational functions by Abellanos and
Alonso.®

We do not have an algorithm for the complete solution
of the simultaneous partial differential equations (4).
However a single equation of the form (4) with x; given
by (3) may always be solved. We are led to consider the
total differential equations

dx,/Z}x,,C’;, = independent of j. (12)
]

Ince? suggests replacing the left-hand side of (12) by
new ratios whose numerators and denominators are
appropriate linear combinations of the old ones

2odx; M Zxkcﬁ,u,, = independent of /, (13)
i P

with the u;; chosen so that
2iC 51 = N bas (14)
7

i.e., My is an eigenvector of the matrix C’}, belonging
to the eigenvalue }; (we suppress the dependence of y
and X, on 7). Then we have

4

%,: independent of Z,
1%

(15)

where x; =2 ;¥;lt;;. Provided the eigenvectors are com-
plete we get the complete solution of the single equation

(4):

. n I
X1 x,"1 x M
Fiv) =6 (S S S, ) (19
We note that Ince’s solution (16) may be generalized
to include the case where the eigenvectors of C}; are
not complete. We augment them by the generalized ei-
genvectors i}’ which satisfy
LG5 P =N + p v, 1
i
Here u{’ =0 and ¢}’ is an ordinary eigenvector. Choos-
ing x =73, ,x,uf" as independent variables (i.e., casting
the matrix C5; in the Jordan normal form), we get (12)
in the form

dx’(h)

N F x0T independent of /, A, (18)

which may be integrated straightforwardly. An example
is worked out in Sec. V.
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We conclude this section by referring to some simple
properties of the invariants, pointed out by Abellanos
and Alonso.'® The invariants found in the subsequent
sections of this paper, of course, have these properties:
(a) The number of independent invariants is »-R, where
7 is the dimension of the algebra (order of the group)
and R is the rank of the commutator table, considered
as a matrix; for the purpose of computing this rank,
the generators X; are regarded as independent c~number
variables. (b) Since an antisymmetric matrix has even
rank the number of independent invariants is equal to
the dimension of the algebra, modulo 2. {¢) The invari-
ants of semisimple and nilpotent algebras may be chosen
as homogeneous polynomials, i.e., Casimir operators.

Note that a direct integration of equations of the type
(15) or (18) will always lead to a set of independent in-
variants that is complete in the sense that all invari-
ants can be expressed as functions of these. However,
we have often found it convenient to replace these (»-R)
invariants by a different set of (+¥-R) invariants. Indeed,
taking appropriate functions of the obtained invariants,

TABLE I, Real Lie algebras of dimensions three and four.

we can often obtain simpler invariant operators and can.
in particular, require that these be hermitian (or at
least symmetric) operators.

1. REAL LIE ALGEBRAS OF DIMENSION UP TO
FOUR

In this and Secs. IV and V we ignore algebras which
are the algebraic sums of algebras of lower dimension;
their invariants are just those of the subalgebras of
which they are the algebraic sum.

The algebra A7 ; means simply the jth algebra of di-
mension . The superscript(s), if any, give the value(s)
of the continuous parameter(s) on which the algebra de-
pends. Restrictions on the range of the parameters are
to avoid double counting and algebraic sums of lower
algebras and in a few cases, to single out special well-
known algebras. Our list is based on that of
Mubarakzyanov. %

There is just one real algebra A, ; of dimension one;
it has one invariant, a Casimir operator, which is its

Name Nonzero commutation relations Invariants Comments
Az lesesl=ey e nilpotent (Algebra
of Weyl group)
Az lejesl=ey, leqesl=€y+ey ey expl—e,/eq] solvable
Ags lejesl=eq, legesl=ey ey/eq solvable, DX T,
Az lejesl=ey, [eqeql=-e, ee, solvable, E(1,1)
55 lejesl=eq, lejesl=ae, (0<lal<l) eyert solvable
Az lejel=—e,. lege;l=e, e}+eb solvable, E(2)
51 lejesl=ae;~ ey, leesl=e;+ae, (a>0) (e}+ed ey +ie)/ (e —iey) |t solvable
As g lejesl=—2ey, lejerl=eq, lejesl=ey 2e+eje3+eqeg semisimple, SU(1,1)
Ag'g [eieg]:eg, [2293]321, [2321]=62 e%+e§+e§ semisimple, SU(Z)
Ay lejesl =ey, lejesl=e, ey, ei—2ese, nilpotent
1,2 lejel=aey, lese,l=e,, lejeql=ey+e; (a=0) ey exp(— es/ey), /ey solvable, derived
algebra ~3A4,
Ay lejesl=eq, lejeq)=ey e expl~ey/e;), € solvable, derived
algebra ~34;
e 2e,8q — €3 solvable, derived
A lejed=eq, lesel=ej+e,, [esel=ey+e; eq exp (— -e-f), -—1—"11——-2‘21 algebra ~ 34,
AP lejed=ey, lese)=ae,, [ese))=be, et/e,, ei/e; solvable, derived
(ab=0, ~1=a=b=1) o\ it algebra ~34,
/e €278 solvable, derived
AP, lejed=aey, le,el=bey—e;, lese,l=e,+bey %ﬁ—g, (e%+e§)( - :
' @=0, b=0) ej+es e,~ie, algebra ~ 34,
Ay lesesl=ey, leje,)l=2eq, leesl=e,, leesl=e,+eq none solvable, derived
algebra ~ A, 4
Ay lejesl=€y, lee)=e,, lesel=—eq ey, egey+ese,~2ee, solvable, derived
algebra ~A; 4
- = — — le, derived
AL, lesesl=ey, lee)=(1+ble;, leg,l=e,, lege,)=be, none i?é‘;%l;:w Ae3 Vor 24,
(—-1<b=1) ,
for b=0)
Ay, 10 lewesl=e;, lesed=—e;y, legesl=e, ey, 2e,e,+e}+ek solvable, derived
algebra ~A4;
3,11 lesesl=ey, leje,)=2ae,, lese,)=ae,—ey, lge, none solvable, derived
= ey +ae (@a>0) algebra ~A;
Ay pp lejesl=ey, legesl=ey, lejesl=—ey, legel=ey none solvable, derived
algebra ~24,
988 J. Math. Phys., Vol. 17, No. 6, June 1976 Patera et al. 988



single element. There is one real algebra 4, of di-
mension two. The commutation rule is [elea]———ea; it is

solvable. It has no invariant.

There are nine real algebras of dimension three, two
of which depend on parameters and hence constitute

TABLE II. Real Lie algebras of dimension five.

continua of algebras and there are 12 real algebras of
dimension four, five of which depend on parameters.
In Table I are given the invariants of all three and four
dimensional real algebras, and since Mubarakzyanov’s
work is relatively inaccessible, we also give in Table
I the nonzero commutators of the elements.

Name Nonzero commutation relations Invariants Comments
As,y lejesl=ey, leesl=e, ey, €y, egez—eqe nilpotent
A, lesesl=ey, lesesl=e,, leesl=ey ey, e3—2eje;, el+3ele;—3ee.e, nilpotent
A, lesed=ey, lesesl=ey, leesi=e, ey, ep, ei+2e,e5~—2ee, nilpotent
As 4 lese,]=ey, lesesl=¢; e nilpotent
Ay s leses] =y, lesesl=eq, legesl=e, ey nilpotent
As s lesed=ey, [eesl=ey, lesesl=e,, lesesl=e; ey nilpotent
AP lejesl=ey, [eqesl=ae,, lese;]=be,, ei/e,, el/ey, ef/e, solvable
leqesl=cey labe=0,-1=c=b=a=1)
Ag lesesl=ey, [esegl=e;, lejesl=ce, (0<lcl=1) ey, e%/e,, esexp(—ey/ey) solvable
lejesl=ce, (0 c=b)
Aley lejesl=ey, lejesl=e;+ey, leses)l=bes, el/e;, ef/es, eyexp(—ey/ey) solvable
lejesl=ceq (0=c=b)
As, 10 lesesl=ey, leses)=ey, leesl=e, ey, e§—2eiey, ejexp(—ey/ey) solvable
AL 11 leresl=es, lesesl=eqtes, lesesl=ey+ey, sf, ejexp (— 52) -25'3 -< solvable
4 1 1
lejes]l=cey (c=0) t
2e; &
As, 19 lejesl=eq, [ejesl=e;+e,y, lesesl=ey+es, e; exp <— —z—z), _3_13 - az s solvable
1
lejesl=e;+ey
3
3e4_ 3ere . %
e e} e
et e e, +ie, \!
Ash, lejes)=e;, [esesl=ae,, lese;]=pes—qgey, ;;' el & (;2j;:4') solvable
lejesl=ges+pe, (ag=0, lal=1)
eatie,
Ag'm leyesl=ey, legesl=pe;—e,, lesesl=eg+pe, ey, (ef+ef (e —ze4> ) solvable
3
(83+e§) exp( 20 22)
5,15 lejesl=ey, lejesl=ey+e,, lesesi=ae,, 1. e exp( sf) @3 exp (— ?;) solvable
lejesl=e;+ae, (lal=1)
ta = = —pe,— jj’_ge ex~iey _e
Ay leesl=ey, lesegl=eq+e,, legesl=pes—qey, drelr ef“(es+ied>, ey exp( 91) solvable
lesesi=qey+pey (g=0)
(ei+ede g o fej+ies \F
A lejesl=pes—e;, lesesl=e +pey, lege;l=ge;—sey, —}—52; (ef+ed (—=2) , solvable
[ (e§+e) ey —ie,
egesl=sestqey (s+0) lals
e (22)
e;—ie,
ey, — + i
AL 15 lejes] =pes— ey, leesl=e;+pey, "1;%?:222‘53, (e}+ed (E’—%) , solvable
2
lesesl=ej+pe;—ey, leesl=e,+es+pe, z0) et ene
(e?+ed) exp ( 2p —-‘jTng-)
Ay, lesegl=eq, lejesl=aey, leyesl=e,, 4/ e} solvable
leses]=(a—1)e;, leses]l=be, (b=0)
5,20 lesesl=ey, leesl=ae, leyeql=e,, e; expl-aley/e;)] solvable
lesesl =(a~1)e;, lesesl=e,+ae,
A2 lesesl=ey, lejesl=2¢;, le,esl=e,+e, ej/e; solvable
legesi=e3+ ey, legesl = e,
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TABLE 1I (Continued)

As, lesesl=e,y, lesesl=e;, lesesl=e, e solvable
AL 53 leyesl=ey, lejesl=2¢,, lesesl=e,+e;, ef/e} solvable
lesesl=e,, lejegl=be, (b= 0)
Af lesesl=ey, lejes)=2e;, lesesl=e;+ey, ey expl—26(ey/e,)] solvable
lesesl=e;, lejesl=€e +2e, (=21
Ay leesl=ey, leesl=2pey, leesl=pey+e,, ef/ef solvable
lesesl=pes—e,, leesl=be, (b=0)
A%fze legesl = ey, leesl=2pe,, leesl=pe,+e,, e expl—2ep(e/e)] solvable
lesesl=pes—e,, leesl=€e,+2pe, (€=21)
Ag, leesl=e,, lejesl=e;, lesesl=e;+ey, ey exp(—e,/e,) solvable
leesl=e;+e,
AL o lesesl=ey, lejesl=aey, lejsesi=(a—1)e,, ey e, solvable
lesesl=es+ey, leesl=e,
As, 9 leyedd=ey, lejesl=ey, lesesl=e,, lees)=e, ey solvable
A 5 lesesl=e, leje)=e,, lejesl=(a+1ey, (e} — 2e,2) ™Y/ e} solvable
leses) =ae,, lesegl=(a-Ve;, leesl=e,
As, 31 lesesd=ey, lesel=ey, lejesl=3ey, (e3—2e,e)%/ e} solvable
leses) =2¢,5, lesesl=eq, lesesl=ez+ey
A5 lesed =ey, legeld=e,, lejesl=e, e¥’ expl(ef - 2ee;) /e solvable
lesesl =e,, leqesl=ae;+e,
Agt% lejegd=ey, leged=be;, lesesl=e,, e}/ e solvable
lesesl =ae; (a®+b2=0)
AS 54 leiel=ae;, lee)l=e,, legel=eq, (e3/e,) exples/e,) solvable
lesesl=e;, legesl=e, solvable
A%?as; lese)=bey, lejejl=ey, legesl=ey, rgﬁ%—;(%) * solvable
lejesl=ae,, lewsl=—e;, lesesi=e, (@?+b%=0)
As 56 lejes)l= e, lejesl=ey, lege,)=ey, (egeq+eqe,+2e.e) /ey solvable
lesesl=—e,, legesl=e4
As,; lesesl=ey, leje,)=2e, lee l=ey, (e} +ed+2eie)/eq solvable
lesesd=e;, legesl=—e;3, legesi=ey
As 3 lejesd=ey, legesl=ey, lesesi=e; ey solvable
As, 39 leie)=ey, leesl=e,y, lejesl=—e,, ey solvable
lesesi=e;, leesi=e;
As 40 lejegl =2e;, lejesl=—ep, leyesl=2e;, {e,4 - eyese; — €38} qrmmetrized solvable
leje) =e5, lesejl=eq, leesl=—e;, lesesl=e,
IV. REAL ALGEBRAS OF DIMENSION FIVE de, _ _de, _ de, _ de, 0 (20)
There are 40 algebras of dimension five??; 18 of them ber—ey exthe, entpe=e, €T CTIe
depend on one or more continuous parameters. Their The matrix
commutation rules and invariants are presented in Table pP1 1 0
. ~1p 0 1
We give here the solution of Eq. (4) for the algebra ci,= 00 p 1 (21)
At |4, which illustrates some of the points discussed in 00~-1 »p

Sec. II. The condition y;F(e)=0 for i=1, 2, 3,4 merely
states that F is independent of e,. The equation x;F(e)
=0 reads

[(er~ e)d,, +(ey +pe,)d,, + (e +peg - e,),,

+ (ez + e3 +pe4)ae4]F(elv 62’ es; 64) = 0° (19)
The subsidiary equations for (19) (see Eq. (12)] are
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has two eigenvalues p £i. The new independent variables
which correspond to its two eigenvectors are

eM=e tie,, (22)
while those which correspond to the two generalized
eigenvectors are

e =e,zie,, (23)
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Now Eqs. (20) are replaced by

de® delV de®
@ F)el Pp-0eP T p+ie® +eD
de®

(24)

=y -
p-iyeH+e)

From the equality of the first two ratios we get the
invariant

(2 +eD(e +iey) /(e —ie) [P =C;. (25)
The equality of the first and third ratios, and of the
second and fourth give two more invariants

C.=eM exp{- (p+i)ef/ef]} (26)
Instead of C, we use

1+ip ~1-ip
1 Cr*?C2 _a18—€xe5

e Rre) a5e 27

Cy

and

V. REAL NILPOTENT ALGEBRAS OF DIMENSION SIX

Morozov® has listed all real nilpotent algebras of
dimension six. Their commutation rules and invariants
are given in Table III. The invariants, of course, are
all polynomials.

It is interesting that, contrary to the semisimple case,
one cannot always find a functionally independent set of
invariants for a nilpotent algebra which is also an inte-
grity basis in the sense that any polynomial invariant
can be expressed as a polynomial in them, For example
Ag,, has an invariant

C=e.el - 2e.e e, + 20,68, (29)

which, in terms of the polynomial invariants given in
Table II, must be written

C= [(eaes - 6465)2 + 32(29364 - e§) ]/94- (30)

Similarly Ag, , has an invariant

e e, +e,e
Cy=C.C. exp2Cy = (ef + c3) exp {— 2 _Ie—%jr.é_é} - (29 C =9elel - 3elel ~ 18e,e,e,¢, + Begel + Bele,, (31)
TABLE III. Nilpotent algebras of dimension six.
Name Nonzero commutation relations Invariants
Ag,q lejesi=e;, lejesl=ey, lejesl=e e,, €, €xeq—ese;, 2e,e,—e}
Ago leeyl =€y, lejesl=ey, lejed=e;, lejegl=e eg, 2ee0~el, 2e.e,—2e5e5+e],
3esel— 3eseqeq+ el
Ag s leje)=eg, lejesl=ey, lejesl=e; ey, €5, €, ee5+ezeg—ere
Agy lejey)=e5, lejesl=eq, lejeql=e e5, e
%5 leyesl=e;, leje)l=eg, leses]=aey, leeyl=e;la=0) es, 2
Ags lejes]=eg, lejesl=ey, lejeyl=e5, lejesl=e; es, eg
Agq lejesl=e,, lejell=e;, lejesl=¢q e;, €g
Agp lejer)=es+e;, lejesl=ey, leses)=eq es, eg
Ags leieg] =ey, lejesl=ey, lejesl=eq, leyesl=eq es, eg
5,10 lejesl=eg, lejesl=es, lejeql=eq, ‘es, @
lese;l =aeq, lesel]l=e5 (a=0)
Ag 1 lejesi=e;, lejesl=ey, lejeid=e5, lejesl=¢4 es, e
Ag 1y lejesl=e,, leel=eg, lesesl=¢; eg, 2egeq~e}
Ag 13 lejesl=e5, lejesl=e,, lejesl=eq, lejesl=eq eg, 2eze¢~ el
5,14 lejesl=e,, lejel=eq, lejesl=e;, legesl=aeq (@ 0) eg, el+ael-2aese,
Ag,15 leesl=e;tes, lejesl=ey, leel=eq, lejesl=eq e, €}-2eqe;
Ag, 15 lejesl=e,, lejel=e;, lejesl=eq, eg, 3ezet+el—3e,eqe,
lesesl=es, lesel=e;
Ag, 11 lejesl =y, lejesl=e;, lejel=e;, lejesl=eg eg, €3 - 2ese,
& 18 lejes)=e;, lejesl=ey, leje,]=eq, e;, ei+ael-2aeq e,
lejesl=e;, lesesl=ae; (a=0)
Ag 19 lejesl=e;, leesl=ey, leje,l=es, eg, ei~2ee,
lejesl=eq, legesl=eq
Ag 5 lejer]l=e;, lejesl=ey, lee l-es, eg, €i+3eqel— 3esese,
lejes) =eq, legesl=e;, lejeql=eq
Ag o lejesl =€y, lejesl=eq, lejesl=ey, ey, e}+2e.e,— 2eqe,
lesesl=e;, leseql=eq
Ag, 22 lejes]=ey, lejesl=e5, lejesl=eq, eg, 203+ 3eleg+ eyl — 6egece,
lesesl=e,, leseql=es, legel=eq
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which may be expressed as

C =[(2e e~ €2)® + (3ee? — 3e,05e, + e3)?)/ ek, (32)

V1. CONCLUSIONS

We have examined all existing real Lie algebras of
dimension 7 <5 and all real nilpotent Lie algebras of
dimension »=86. For each algebra we have found all in-
dependent invariant functions F(X, ..., X,) of the gen-
erators. The invariants obtained as well as the classifi-
cation of Lie algebras that we use, are summarized in
Tables I-III. The tables include only algebraically in-
decomposable Lie algebras, i.e., those that cannot be
written as algebraic sums of lower dimension Lie alge-
bras (the invariants of an algebraic sum of Lie algebras
are simply the invariants of the individual algebras in
the sum).

Only one indecomposable real Lie algebra of dimen-
sion =2 exists. It has no invariant. A glance at Table
I shows nine types of three-dimensional algebras, two
of which A3 5 and A§ ; are actually infinite one parameter
families of algebras. These algebras have one invariant
each. The 12 types of indecomposable four-dimensional
algebras, each having either two invariants or none are
listed with their invariants in the same table. The 40
types of five-dimensional algebras and their invariants
are listed in Table II, the 22 types of nilpotent six-
dimensional algebras in Table III.

Let us make a few comments on the results of this
paper.

(i) General invariants, rational invariants, and
Casimir operators all appear on the same footing, as
solutions of the differential equations (4). Indeed, all
invariants obtained can be written in the form

_ r ap Un+1(Xi)
F(Xl) “[kl;ll Uk (X{ﬂexp U"(X,-) ’ (33)
where U,(X,) are homogeneous polynomials in the gen-
erators X;, such that each term is symmetric with re-
spect to permutations of the order of the generators.
The a, are constants, in some cases negative or com-
plex ones. Clearly, if U,,;(X;)=0 and the numbers a,
are all mutually rational and of the same sign, then
F(X;) defines a Casimir operator. If U,,;(X;) =0 and the
numbers a; are all mutually rational but not all of the
same sign, then F(X,) defines a rational invariant.
Otherwise F(X,) is a general invariant.

(ii) The generalization from polynomial invariants to
all invariants seems to be a very natural one, Indeed,
when an algebra depends on a parameter (or parameters),
the parameter may figure in the expression for the in-
variant, For certain values of the parameter a general
invariant may go over into a rational or polynomial one.
Many such examples are found in our tables. Specifical-
ly, consider the algebras Aj 5 and AS ;. The Lie group
generated by Aj ¢ is a subgroup of the similitude group
of the pseudo-Euclidean plane. Indeed, consider the
plane (x,#) with the metric ds?=dx2 - df?. The similitude
group in this case is generated by the dilations D, the
proper Lorentz transformations K; and the time and
space translations P, and P;. Consider the three-
dimensional subalgebra
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i

(ebD+e-bKl)’P0’P1 ’ —-°°<b<°°,

2 coshbd

b#0. (34)

It is isomorphic to Aj ; with @=tanhd and its invariant is
F=(P,+P)"™"® /(P,~P,). (35)

For —« <} <« the expression tanhb runs through all
(infinitely many) negative and positive rational numbers
and in each of these cases the general invariant F will
reduce to a rational or polynomial one.

The situation is similar for the algebra Aj ;. The
corresponding Lie group is a subgroup of the similitude
group of a Euclidean plane. Consider now the plane
(¥, ¥) with the metric ds®=dx®+ dy?. The similitude
group is generated by the dilation D, the rotation L, and
the translations Py and P,. A subgroup isomorphic to
Ajg ; is generated by

Ly,+aD, Py, P, 0<a<w, (36)
and its invariant is
(P2 + PY[(P, +iP,)/(P, - iP,)]i°. (37)

The invariant reduces to a Casimir operator or rational
invariant in the limits @ -0 or a~=, respectively (the
algebras A; ; and 4, ;).

(iii) From the physical point of view one can imagine
a situation in which an algebra like (34) or (36) generates
the symmetry group of a problem. An infinitesimally
small change in the conditions of the system under study
could change the value of say the parameter a charac-
terizing the symmetry group and thus change a Casimir
operator into a general invariant or vice versa.

(iv) The above arguments make it extremely plausible
that general invariants should play the same role in re-
presentation theory and physical and other applications
of group theory, as Casimir operators do. Indeed, con-
sider the group generated by the algebra (36), but in-
clude the limiting cases @~ 0 and @ —=, The theory of
induced represen’ca.tions25 can be used to induce repre-
sentations of the group from representations of the sub-
group of translations. The problem then arises of classi-
fying points in the space of characters of the represen-
tations of the translation group into orbits?® under the
action of the factor group generated by L; +aD. For a=0
these orbits are circles, characterized by a radius p,
where p? is a value of the invariant P?+ P}, For a —~=
the orbits are straight lines intersecting at the origin,
characterized by an angle ¢, where ¢ is the inverse
tangent of a value of the ratio P,/P;, figuring in the in-
variant (P, +iP,)}/(P; - iP,)*. For 0<a < the orbits
are spirals passing through the origin, characterized
by a value of the invariant (37). It seems to us that all
types of invariants thus partially or completely charac-
terize the irreducible representations of the algebras
considered.

(v) In order to use the invariants of an algebra it is
necessary to give them a clear mathematical meaning.
For all cases encountered in this paper this is facili-
tated by the fact that the individual “constituents” of the
invariants (33) always commute. Thus, a rational in-
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variant always occurs as the ratio of two commuting
polynomials., The polynomials U,,,(X;) and U,(X;) in the
exponential commute with each other and with the poly-
nomials multiplying the exponential. Thus, it is always
possible to choose a basis in which all of these mutually
commuting operators are diagonal, The invariant F(X,)
then simply reduces to a number that indeed character-
izes a representation.

On the other hand, we are free to choose other bases
for representations. Then F(X;) can be interpreted,
e.g., as an integral operator.

(vi) In the case of semisimple algebras all invariants
can be written as functions of ! polynomial invariants,
where [ is the rank of the algebra. These ! basic invari-
ants (Casimir operators) form an integrity basis, i.e.,
any polynomial invariant can be written as a polynomial
in the basic invariants.

(vii) In the case of nilpotent algebras all invariants
can again be written as functions of v-R polynomial in-
variants (v is the dimension of the algebra, R the rank
of the matrix of the commutation table). However, in
this case the “basic invariants” do not necessarily form
an integrity basis. Thus, higher-order polynomial in-
variants may exist, that are functions of the lower ones,
but not polynomials in them. Examples were discussed
in Sec. V.

{viii) The low-dimensional Lie algebras studied in
this article should play a role in many applications. In-
deed, very many of them occur as subalgebras of the
fundamental groups of physics, such as the Poincaré
group, Galilei group, de Sitter groups, conformal group
ete.

Finally, let us note that many further questions, both
conceptual and technical ones, remain open. Let us just
mention a few of them,

(a) It would be desirable to obtain general formulas
for the number of independent polynomial and rational
invariants for an arbitrary algebra (N=7- R is the num-~
ber of all independent invariants). It would also be de-
sirable to obtain general statements about the degree
of the independent Casimir operators, to find out when
they do form an integrity basis for all polynomial in-
variants, etc.

(o) The problem of finding all invariants has been re-
duced to that of solving a system of first-order linear
differential equations. While we have provided a method
for solving any one of the equations it would be useful
to have an algorithm for finding the general solution of
the entire system of equations.

(c) For physical applications it would be of interest
to classify all real Lie algebras of higher dimensions
(at least upto dimension »=10) into equivalence classes
and to find their invariants (since such algebras occur
as subalgebras of, e.g., the conformal group of space
time).
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(d) Throughout this paper we have restricted ourselves
to invariants that are obtained by solving certain differ-
ential equations. The solutions were assumed to be or-
dinary functions that are at least once continuously dif-
ferentiable. Other solutions can exist in different spaces,
in particular distribution type solutions can be of consi-
derable interest. For example, the Poincaré group
(inhomogeneous Lorentz group) has two Casimir opera-
tors m? and W? (mass squared and spin squared), which
could be found using the methods of this paper. However,
for m? = 0 a further invariant exists, namely, sign p,,
the sign of the energy. This quantity can be expressed as
a distribution, e.g., in terms of a step function 8(p,).

A systematic approach to such “non functional” invari-
ants should be provided.

(e) A rigorous and complete study of the representa-
tion theory of groups with nonpolynomial invariants
should be provided. Inter alia this should establish
whether the invariants suffice to label representations
completely or whether further characteristics are ne-
cessary. This also raises the problem of finding the
spectra of the invariants, of providing them with a ri-
gorous meaning in each case, etc.

(f) Many problems related to physical applications of
the invariants remain unsolved, in particular their re-
lation to observable quantities.

We plan to return to the above problems in the near
future.
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Coulombian asymptotic states
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We define and study Coulombian asymptotic states, denoted by [keo ), which are useful and important

for stationary Coulombian scattering theory. Using these asymptotic states, we are able to derive from the
off-shell T matrix the physical on-shell T matrix for Coulomb plus short-range potentials. This function is
proportional to the physical scattering amplitude. A generalized Lippmann-Schwinger equation and
related equations are derived. Many other applications of the asymptotic states exist. We show the precise
connection of [koo ) with the time-dependent Coulomb scattering theory.

. INTRODUCTION

The (nonrelativistic two-body) stationary scattering
theory for short-range potentials [loosely speaking:
Vi) =0, a>1, »—=]is well founded. If the po-
tential is Coulomb-like, there appear difficulties that
stem from the long range (in fact, infinite range) of
the potential. Two main problems can be discerned:
(i} the scattering amplitude is singular in the forward
direction, such that it is not an integrable function
there; (ii) the scattering states do not approach free
states asymptotically (i. e., when » —«) and, related
to this fact, the T matrix in momentum representation
has no half-shell and/or on-shell limit,

To solve problem (i), Herbst! and Taylor? indepen-
dently introduced certain distributions (somewhat dif-
ferent from each other) which are suitable to handle the
divergencies occurring in the forward direction.

In the present paper we define and study so-called
Coulombian asymptotic states, in momentum represen-
tation denoted by {plk«), which are suitable tc solve
problem (ii). They can be thought of as generalized dis-
tributions. The phrase “agymptotic state” is an ab-
breviation of “asymptotically Coulomb-modified im-~
proper free state.” To be precise, in this paper we
consider the pure Coulomb potential only. In a forth-
coming paper, many applications of k=) will be re-
ported, also to Coulomb plus short-range potential
scattering formulas.

We note that the closed formula for {plk ) [see Eqgs.
(3) and (4)] is not essentially new. Nutt® introduced
these asymptotic states for the first time, although he
defined them inaccurately. To our knowledge, the
states have not been used or even mentioned after-
wards, up until now. Presumably because an accurate
definition and a clear interpretation of these asymptotic
states were missing, their importance and usefulness
have not been recognized.

In Sec. II we give the exact definition of the asymp-
totic states and of the class of “test functions” on which
they are defined. In Sec. III we derive a generalized
Lippmann-Schwinger equation and related equations.
We introduce the so-called physical half-shell and on-
shell T matrices and we show that the Coulomb scat-
tering amplitude is - 27? times the physical on-shell
Coulomb T matrix. In standard scattering theory this
relation is well known (the adjective “physical” is then
superfluous).
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In Sec. IV we investigate the relation between the
asymptotic states (plk«) and certain formulas playing
a basic role in the time-~dependent Coulomb scattering
theory. The connection we find there, yields a clear in-
dication for the interpretation of the asymptotic states.
Finally, Sec. V contains the summary and discussion.

(l. DEFINITION OF THE ASYMPTOTIC STATES
[k oo)

Already in 1951, Guth and Mullin! published an ex-
pression for (pik+)c, the Coulomb scattering wave
function in momentum representation at energy %2> 0,
We are going to show now that from that expressgion
{plk=) can easily be obtained.

As usual we take F=2m =1 (m is the reduced mass)
and denote the Coulomb potential by Vo (r) =2kv/r. In
Sec. IV it will appear preferable to use the k-indepen-
dent strength parameter s =- ky. Throughout this paper
we shall be concerned mostly with pure Coulomb formu-
las. With a few exceptions, the subscript C will be sup-
pressed., We adopt the following normalization:

&+ |k+)=5(K -k,

which differs from the one in Refs. 3 and 4. According
to Guth and Mullin® one has, with the usual convention
€40,

(p|V|k+)
. 2= (k+i€)] 7
= exp(- 77')"/2) r(l + Z'Y) %’2}’_ ([ii;) — k(f +Ze))]-n7 ) (1)
=1 d
2ky de
The differentiation with respect to ¢ yields two terms.
One of these is

(plk+)y= {p|V|k+). @

{p|k.=exp(-1v/2) T2 +1y) ﬁz % ) 3)

where the left-hand side is defined by the right-hand
side. We introduce the notation

{plk=)=1im (p|k.). 4)

This is the “plus” state (plke+). The + sign will
mostly be suppressed. The “minus” state is defined
by

<plke_>5<plke>*; (5)
{p|k>-)=lim (p[k,-). (6)
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Note that this definition is in analogy to the complete
physical scattering state |k - ), for which we have

(p|k-)=(p|k+)*.
We call lk.+) and lko+) “Coulombian asymptotic
states.” The limit € ¥+ 0 in Egqs. (1)—(6) should be care-
fully defined. We give a precise definition of the asymp-
totic states in the following theorem. The object h, ap-
pearing in the theorem plays the role of the Coulomb T
matrix, as will be shown later on.

Theorem. Let k= 1kl >0 and
e lpy=(p - k~ie) " f(p), (7)
with fe 2..(IR%) and f(p) continuous at p=k. Further let
0. ik.) mean
<he lke) = fm3 dp <he |P><P lke):
where {pik.) has been defined in Eq. ( 3). Then
Lim G, ko) =f0)[2)* exp(- 1y/2) T(1 - iN)]". (8)

Proof. The proof is essentially a generalization of
Simon’s “d-function computation,” see Ref. 5:
lim,, e(x® + &)t =78(x). Using Egs. (3) and (7) and
writing f(p) =f(p) - f(k) +f(k), we see that the proof
of Eq. (8) is complete once we have proved the follow-
ing two equations:

® upe [ dolsp) -r0p k-0

o Lf = (ktie)]”
lp-kZP+ePHar ™™ (9)

(ii) lim % exp(~ 1y/2) T2 +iy) f dp(p - k- ie) "
o LA = (e +i0t]¥ _ (2k) 7 exp(my/2)
Tlp—kIP+ 7 = T(-) °

(i) The integral in Eq. (9) exists when €> 0 and it is
absolutely dominated by

exp2r]y|) [ dp|f(p) - F0) | {]p-k|* +€&}2.

Replace the integration variable p by g=p -k and define
the function g(°) by

gl@)= [ dilfl@+% -f)|.

Here g denotes the unit vector in the direction of g,
and the domain of integration is the unit sphere. Then
g(°) is measurable and essentially bounded, so g€ 2 ..
Furthermore, g(0)=0 and g(g) is continuous at ¢ =0.
It is now sufficient to prove

(10)

ay

A < gledt
e | o 12

Take g ~z=g/¢€, then Eq. (12) becomes

® dzglez) 2*

lim W =0.

i 0
The integrand in this integral converges pointwise to
zero and is essentially bounded by [l g |l 22/(z% +1)?,
which is integrable, so the integral has zero limit,
This proves Eq. (9).

(ii) The integration over the angles in Eq. (10) is
easily performed. We have to prove then
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. ” d .
e .( e UEN G U La (R

~[(p+ R+ 11" =1 exp(my)(20)" | T(1 +47) | 2.

(13)
The integral here exists when e> 0. If one excludes any
neighborhood of p =k, the integral exists also when
€= 0. Consequently, the interval of integration (0, =)
may be replaced by an arbitrary neighborhood of the
point p=~k. This in turn implies that one may in Eq. (13)
replace p/k by 1, (p+E+i€)'” by (2k)*?, and neglect
the term containing [(p + k)? + € ]1-%*, Finally, one can
simplify the integrand by dropping the factor
(p-E~i€)"(p—k—ie)""=1. All this means that it
remains to be proved:

edp (p—k—ic)*
(p-RP+€é (p-k+ie)”

o

lim

i =mexp(my) |T'(1+i¥) |2

(14)

The indefinite integral of the integrand in Eq. (14)
is easily found, yielding for the left-hand side,

tim - L (pmkogi i 1 (1_ eXp(w)\)
a0 2y (p-k+i07 |,, 2 exp(~mr)/ *

Utilizing the well-known equality
T +iv)T (1 - iy)=ny/sinhny,

we find that Eq. (14) is valid, so Eq. {19) has been
proved. This completes the proof of the theorem.

Reviewing the above theorem and its proof, we find
that the domain of integration IR®, implicitly understood
in Eq. (8), can be replaced by any neighborhood A/(k)
of the point p=k. In other words: The asymptotic state
{p|k =) has support {k}. We deduce from this that the
class of “test functions” &, can be enlarged by relaxing
the restrictions. It is sufficient to require only:

F(p) continuous at p=k and fe ¢, in some
neighborhood A/(k),

(h.|k,) well defined for all €:¢,>€> 0, some €,> 0.

(15)

Let the symbolD,,e mean: in the sense of “generalized
distributions” with the above defined “test functions”
(helpy=(p - k—i)®" f(p). Then we have, in a formal
compact notation, the extended theovem:

(plk=)=08(p- K Liml(p - k—ic) " (2%) "

X exp(- 1y/2) T(1 - N7, Dy - (16)
I11. SOME STATIONARY SCATTERING FORMULAS

In Secs. IIIA—IIIC we shall derive the following
three formulas:

lk+)= ko) + G, V]k+), anmn

[k +)=|kw)+ G,T [k}, (18)
(koo = | T|kemy= (/oo - | V]+)

= ‘fcz(f'ﬁ'), k'+k, K =RcR". (19)

Because of the well-known operator equality Gy T =GV,
Eq. (18) implies
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lk+)=(L+GV) k).

The operators G, G, and T are supposed to have
argument (& +i€)?, €40, and f€ is the Coulomb scatter-
ing amplitude,

(20)

wieiy

7o = 2 explaiog (5%) (21)
Note that Egs. (17)—(20) reduce to well-known equa-
tions of standard short-range potential scattering theory
if one replaces k=) by the free state k). Then Eq.
(17) is known as the Lippmann-Schwinger equation and
Eq. (19) expresses that the on-shell 7 matrix is
proportional to the amplitude. We call {(p!T Ik«) the
physical half-shell 7 matrix and <(k’= — |T |k «) the
physical on-shell T matrix (&’ =#&).

A. Proof of Eq. (17)

In order to derive Eq. (17), we perform the differen-
tiation with respect to € in Egs. (1) and (2). This gives,
at once,

. . 1
(p|k+)=lim (p[k) - lim T

2 _ )2 Jir
xexp(- 7v/2) T (1+iy) % [—[11—;—:—15—}?2%7)—]4:;7 .

(22)
The second term on the right-hand side is just
{p!G,VIk+), as can be seen by inspection. Equation
(17) is the formal expression of Eq. (22).
B. Proof of Eq. (18)

Secondly, we have to derive Eq. (18). To this end,
we prove that Tlkeo)=Vik+), i.e.,

151‘%1(p]T((k+i€)2)lke)=<P|V k+), prk, (23)

where the right-hand side is given by Eq. (1) and lim,,,
is understood. Recalling the theorem, it is clear that
we need the behavior of the off-shell Coulomb T matrix
{p!T((k +1€)*) Ip’) at p’ =k. For this purpose we consid-
er Eqs. (13)—(18) of Ref. 6. The limit p’ % means in
those equations: x —~1, y—~0. Furthermore, 1+I(y)/
x = (=y)"TA+iMTA-y) and y = (p* = ) (p" - K2)/
(4¥%¢%). Assuming p#p’, we derive from Eqgs. (16) and
(18) of Ref. 6,

(p|T(®)|p")=ky(mg) T (1 +iy) T'(1 - i7)

x(ﬂf—_kﬂz(kz;éﬂ)iy

e Fo.ph),  (24)

where the function f has pleasant properties. Besides
on p, p’, and k it depends on p and p’, but these vari-
ables, being unimportant for the discussion, have been
suppressed. The variable % is here supposed to be com-
plex, with Rek> 0, Imk> 0. We let £ approach the posi-
tive real axis from above. Then f becomes a function

of the real positive variables p, p’, and %, and this
function is continuous at p =k and/or at p’ =Fk.
Moreover,

7, kR =f (R, p";RY =f(E, b3R) =1, (25)

and this equation is valid for all p, §’, provided only
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that p# p’. With the above formulas we can derive the
physical half-shell limit and, in Sec OIC, the physical
on-shell limit of the Coulomb T matrix.

Since we wish to apply the theorem to Eq. (24), it is
natural to replace & by k+ e with 2 real positive. Now
let p be fixed with p# &, and consider the expression
between braces in Eq. (24). From the equality

[ = (& + i€ ][ (R +d€)* = p"2)(k +ie)2 (? + €2)
= - 2ike (B2 + &) ~ pp" ]+ (p? - B2 + &)
X[+ — p2pr ]+ p?(p? — K2 + €D + 4k2e2],  (26)
we see that
{[p? - b+ 0?1l (k + i) — p"? )t + i) 2} ¥
—exp(~ 1) B pt ~ (k+i9) ][ p? — (k+i0?]7,  (27)

when p’ =k, €4 0. Here ¥ may be taken real although it
depends on k+ i€, strictly speaking. We denote now
p-k by q, which is consistent with the notation
q=p-~p’ of Ref. 6 since p’ —k. Application of the
theorem, in particular Eq. (16), to Eqs. (24) and (27)
yields

{p] T‘|k°°>:1€i‘%'l kyr?

x exp(—my/2) T(1+iy) g7 [ p* —(k + i) |17,
(28)

This expression may be identified with (p! VIlk+) be-
cause of f)ﬂi and the proof of Eq. (18) is complete.

We like to point out that Eq. (27) does not hold, in
general. The left-hand side of Eq. (27) has its origin
in the expression (- y)¥" in Eq. (18) of Ref. 6. Because
of the logarithmic cut, running along the negative real
axis, (- y)!" cannot be replaced by exp(- 7v) y'", nor by
exp(my) y'”. In fact, y can become real negative, where-
as y cannof become real positive, if ¢> 0 and Imk# 0.
This can be seen as follows. Owing to y=(x+1)/(x - 1),
we have x=(y+1)/(y - 1) and the assumption 0 sy <1
implies —©0<sx< -1, sox?>1. With the help of Eq.
(26), where now either ¢> 0 or €< 0, this leads indeed
to a contradiction.

In this context it is interesting to note the related
fact that {(p’!T(¥*) |p) is a meromorphic function in the
complex & plane, cut along the real 2 axis, and with
an arbitrary neighborhood of the origin excluded. See
Ref. 6, Egs. (16)—(18) and also (24), where T,(k*) has
been expressed in terms of Legendre’s second function
;. The branch cut of Q, there is just avoided when
Imk+#0 and p’#p, as can be shown with the help of
Eq. (26).

C. Proof of Eq. (19)

In order to derive Eq. (19), we can apply the theorem
at once to Eq. (28). Taking the epsilons in Egs. (3) and
(28) equal, we get

-/l

<ké_ IT’kw>k'=k €l 2712

However, we arrived at this equation in two successive
steps. First the physical half-shell limit has been de-
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termined and afterwards the physical on-ghell limit.
The direct physical on-shell limit is

Clis o p?
lei‘ron<kg— ]T((k+ie)2)|ke):iz—(:7——k—), B=kcR'. (29)

We like to prove this equation in a direct way. Note
that the theorem cannot be applied now. However, the
following proof of Eq. (29) is very much like the proof
of the theorem.

Insert Egs. (3) and (24) into the expression
lim [ [ apap’ (k- |pX(p'| T((k +i9%) | p)

x(plky), k'=kcR". (30)

The asymptotic states have support {k'} and {k} respec-
tively, so we may replace ¢* by 2%*(1 - k-k’) and the
function f in Eq. (24) by one, according to Eq. (25). The
integrations [dp and [dp’ are now easily evaluated.
Consider further

iIm[(p - k- i) (B +ie— p*) (k + i) 1 (B2 + )]
=—ie(R? + € — pp’),

and compare this with Eq. (26). Then it turns out that
Eq. (30) can be expressed as

y [(1-k-k\-1i
anty 2

with

ey (5) [T [

X[ (p -k —ie)(k+ie - p') ]I,

4
1 +iy) T(1 - iy) exp{- 1) L

31)

(p—k+ie)" (p' — B +ie)t
(p-B+e (p'-R)F+¢

(32)

Changing variables according to p - k=¢€z, p' ~ k=ez2’,
we get

o ®© © , (z+i)~i7 (Z’ +i)-i)’
L=r ,/_;, ,[.,, dedz’ i1 Tl

x[(z -G - 2] (33)

The order of integration is unimportant. Now we have
(z,2’c IR)

In(z +4) = 31n(z% + 1) +iarccotz
and
In[(z = )i — 2")] =5 1n[(z2 + 1) (2’2 + 1)]
+iarctanz +iarctanz’,

where the inverse trigonometric functions are deter-

mined by their principal values
— tr<arctanz < 47, O<arccotz<1.

Using these equations we get

L =7 f_: f_: dzdz’ (2 +1)1(z% + 1)1

X exply(arccotz — arctanz + arccotz’ — arctanz’)].

This double integral is evaluated by standard means,
yielding
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L =(2my)(exp(- 1v/2) - exp(37y/2))?
= ()% exp(my) sinh*ry = exp(my) | T(1 +iv) |

Insertion of Eq. (34) into Eq. (31) proves Eq. (29),
of which Eq. (19) is the formal expression.

(34)

In Sec. IV a different but closely related procedure
to obtain the physical on-shell T matrix will be given,
see Eq. (51).

Remark. As we said in Sec. 1, the asymptotic states
defined in the theorem are essentially the asymptotic
states introduced by Nutt, see Eq. (15) of Ref. 3. How-
ever, Nutt’s definition of these states and of the limits
€¥0 is less careful than ours. Also his “minus” state
differs from our state |k« ~). Probably because of
these facts, he finds a different result for the Coulomb
scattering amplitude. It contains in particular a factor
(2%/6%)72* having no limit when €4 0.

IV. CONNECTION WITH TIME-DEPENDENT
COULOMB SCATTERING

In the time-dependent scattering theory a basic role
is played by Mgller’s wave operators §,, defined by

Q, =s- -lim Q(#),

t -~ Foo

(35)

Q1) = exp(iHt) exp(— iH ), (36)

where H is the Hamiltonian H=Hy+ V. The strong
limits in Eq. (35) exist when V has short range, but
they do not exist when V is the Coulomb potential. Ac-
cording to Dollard, ’ the following modification has to
be made. Define

Q°(0) = exp(EH?) exp(— iHyt) expl- (A @) ], (37
where H is now the Coulomb Hamiltonian, and the
“anomalous” operator A(f) is defined by

A(f)=- sH{M? sgn(t) In(4H, |]), 0. (38)

sgn(?) denotes the sign of the time ¢ and s is the poten-
tial strength, V(»)=- 2s/7. In Sec. 1I we chose the
notation V(») =2ky/7, but use of the constant s is here
preferable. Because A(t) is a function of H,, Eq. (37)
is equivalent to

Q) = exp@H1) expl (- iHyt) - A (D).
Dollard’ proved that the strong limits of Q°(#) exist,

QF =s-1im Q°(2), (39)

t~Foo
and that 2 can be correctly interpreted as the Coulomb
wave operators.® For example, the improper stationary
Coulomb scattering states may be written formally as

|k+)=0C k). (40)

It is customary to introduce €¢’-dependent wave opera-
tors §,, by means of the Bochner integrals (e.g.,
Prugovedki,? pp. 436 and 456),

Qe =%€ [ dtexplee’t) @), ¢ >0. (41)
[Here we use €’ in order to avoid confusion. Indeed

the operators G,, G, and T turn out to have argument
k* +4¢’. For example, Eqs. (36) and (41) yield

formally
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K) = i€’ G (& +ie’) | k). (41%)

However, in the preceding sections we preferred to take
the argument (& +i€)?. To first order in € we have

€’ =2ke, | For a short-range potential one has (e.g.,

Ref. 9, p. 437)

2, =s-lim Q.. (42)
8}

In the case of the Coulomb potential, Eq. (42) has to
be modified also. From the paper by Zorbas!? (see,
p. 122: Lemma) it follows that it should be replaced by

0 =s-1im Q. A . (43)
€10

Q.

Here {2, are the Mgller wave operators for the
Coulomb potential, defined by Egs. (36) and (41), and
we have introduced the operators AL which are defined
byﬂ

Al =3¢ fo*w dt exp(= €'t) expliA(®)], € >0. (44)

Upon substitution of Eq. (38) for A(f), these integrals
become essentially gamma-function integrals. Zorbas
obtained the following explicit expressions [Ref. 10,
Eq. (13), in different notation and with opposite sign
convention, cf, Ref. 8],

”5“2

Ag =T(1 +isHV?)(4H ) /e")*PS (45)

After this survey of the necessary formulas, we are
now in a position to make the final step, and to show
explicitly the connection with our asymptotic states.
The operators A,.,, being functions of H,, are diagonal
in momentum representation. From Eq. (45) we get
(recall € — 2k¢)

(plAzk [ =06(p-K)[(@k/" (1~ M) (46)
and
(plAzh. [k)=(p|Az [W)*. (a7)
Here we have turned back to the Sommerfeld parameter
=-s/k, and the + subscript has been suppressed.
Note that Eq. (47) can also be obtained from the equality

Al.=A,_, which is a consequence of the definition of
A, [Eq. (44)] and of the equalities [cf. Eq. (38)],

AY(W)=A(t) =sgn(®) A([¢]). (48)
Now let k, be a “test function” as defined in Eq. (7),
(e|p)=(p - k- i0""7(p).
Then Eq. (46) at once yields
(el Azk [k = FO[(28) " exp(= my/2) T(1 - in)}L.  (49)
Comparison of Eq. (49) with Eq. (8) gives
<he IAE}ze |k> = 151‘%1 <he ‘ke>, (50)
which we denote formally by [cf. Eq. (16)]
|k o) =lim [ k) = Lim 438, [ K), 0, . (50")

Furthermore, from Egs. (46), (47), and (24), (25)
we obtain

im (K| Al T((e +i0?) A3, [K) = - £ Sk -K)/@n%), B'=k,
(51)
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which should be compared with Eqs. (19) and (29). In
the three final equations we have the desired connection
of the Coulombian asymptotic states with the time-
dependent Coulomb scattering formulas in explicit form.

Eventually two remarks are in order.

(i) The “plus” stationary scattering state |k+) is
connected with the limit 7 — ~ «; the “minus” state
k=) with { =+, So if we want to interpret the asymp-
totic states !k« +) in analogy to |kx), it follows from
Eq. (47) that we should have

(p|k~-)=(p|k=)y*,

which agrees with the definition of (plkm -), see Egs.
(4)—(6).

(ii) It is important to realize that |k,) and A3}, |k) are
objects, stemming from quite different starting points.
Their equality in the sense ), [see Eq. (50")] is very
satisfactory, for this shows the way how to interpret
lk.) in the time-dependent picture,

V. SUMMARY AND DISCUSSION

In Sec. II we defined asymptotic states lk«x)
=lim,,, |k, +). According to the theorem proved there,
these states can be considered as “generalized dis-
tributions” defined on a certain class of e-dependent
“test functions,” see Eq. (16). We showed that the
Coulomb T matrix in momentum representation belongs
to this class of “test functions.” This is an important
result since it solves the half-shell and on-shell prob-
lems of the Coulomb T matrix. In Sec. III we derived
some stationary scattering formulas in which the
asymptotic states are applied, see Eqs. (17)—(20). In
Sec. IV the connection of our asymptotic states with
Dollard’s? time-dependent formulation and Zorbas’s!’
time-independent formulation of Coulomb scattering
has been investigated. The main result is here ex-~
pressed in Egs. (50) and (51). The approach of this
paper differs from the ordinary “screening” approach.
With a screened Coulomb potential one gets the ordinary
Lippmann-Schwinger equation in place of Eq. (17).

From the time-dependent theory (Sec. IV) it follows
that the actual scattering of a particle (occurring at
t~ 0, say) should be considered with respect to its be-
havior at t ~+ ~. The movement of the particle (i.e.,
the time evolution of the scattering state in Hilbert
space) is, at large times, not governed by the usual
operator exp(- iH,t), but instead by exp[—- iH — iA(f)],
see Dollard.” The time dependence is translated into
the €’- dependence with the help of Eqs. (41) and (44).
In this way Zorbas!® obtained “anomalous” operators
which we denote by A,.,. In the time-independent pic-
ture, the improper free state |k) has to be replaced
by Az}, k). One can therefore (small € meaning large
times) interpret

- 27K’ [Afnr T((k +i€)?) AL, |K),
with &’ =Fk as the amplitude for the probability, to begin
with the distorted free state A;l, Ik) and to find, after

the scattering has taken place, the distorted free state
denoted by (k’|A};l_. In the same way we interpret
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(k! - | T((e +ie®) |K,),

with 2’ =% as the physical amplitude for an initial dis-
torted free state lk.) and a final distorted free state
(k! - |. Translating back to the time-dependent picture,
we get the correct description of the physical scatter-
ing process.

In conclusion we can say that the approaches with our
asymptotic states |k,+) on the one hand, and with the
operators Ajl,, which follow from the paper by Zorbas
on the other hand, are equivalent in the sense of Egs.
(50) and (51).

The ideas concerning a “renormalization procedure, ”
as the application of Eq. (16), or something like it, has
been called sometimes, have been living in the litera-
ture since a long time. A list containing all relevant
papers by other authors on this subject would become
rather extensive.

The present paper clarifies some obscure points, it
shows precisely how the asymptotic states can be ap-
plied, and, in particular from the connection with the
time-dependent theory, it makes clear why just the
“renormalization procedure” of Eq. (16) should be
applied. In general, our asymptotic states restore the
analogy of the stationary two-body Coulomb-like
potential scattering formulae with the standard scatter-
ing formulae. This will be worked out in a subsequent
paper, where we shall also have occasion to discuss the
approaches by other authors.

From the theorem and Egs. (16)—(20) it can be seen
that [k«) is particularly suited to the two-body Coulomb
T operator at energy k*> 0. Furthermore, we can show
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by means of explicit formulas that exactly the same
asymptotic states can be applied to the total T operator
when a short-range potential is added to the Coulomb
potential. Because the two-body T operator is the basic
object in N-body stationary scattering theory, we hope
that the approach of this paper can be extended to multi-
particle stationary scattering theory involving charged
particles.
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All tensors of contravariant rank two which are divergence-free on one index, concomitants of a spinor
field o,y together with its first two partial derivatives, and scalars under spin transformations are
constructed. The Einstein and metric tensors are the only candidates.

1. INTRODUCTION

It is usually assumed that the field equations govern-
ing the interaction of the gravitational field with any
other field (the latter having associated with it an
energy—momentum tensor T#) are of the form

Al = Tt (1.1)

where A% are the components of a type (2,0) tensor
which is constructed only from those field variables
characterizing the gravitational field. Furthermore,
it is customary to demand that the choice of A¥ be re-
stricted by the identity

AY =0, (1.2)
in order that, as a consequence of (1.1}, we have
T'flj =0,
Typically, if it is assumed that

(i) the gravitational field is characterized by a sym-
metric metric tensor g ,, and

(ii) the quantities A¥ are constructed from g, and its
first two partial derivatives, i.e.,

AV = AV g 8ap,ci8up,ca)s 1.3)
then it is known that,' in a four-dimensional space,
(1.2) and (1. 3) imply that

Al = gGii + bgil (1.4)

where a, b are constants, and G¥ is the Einstein tensor.

In this case (1.4) and (1.1) give rise to the usual
Einstein field equations, where 7% now satisfy

T4 = 71, (1.5)

However, it has been claimed by some, %% that T#
should be nonsymmetric, in which case, as has been
pointed out by Ehlers,? in order to accommodate this
possibility, the assumptions (i) and (ii) would have to
be changed. The purpose of this note is to discuss the
consequence of adopting one possible alternative to (i)
and (ii).

It is known that the gravitational field can be charac-
terized in terms of a spinor field 0,,,. or a tetrad field

hi (=1, ...,4), these two characterizations being
{a)
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equivalent by virtue of the relations

Opaxe = 1 Oppxes
(o)t
the o, ,, being the conventional Pauli spin matrices.
These quantities are related to the metric by

AB_X*'Y’ _

— AX*
g”—'O,AXrOjB}':E € [s3 .

— Y§AX' 7§ (1' 6)
Guided by these observations, and (1. 3), we shall
thevefore seek all tensors AV satisfying (1.2) and for

which

AV =AY(0,, 110y 530 x050)s (1.7

wheve AY ave also assumed to be invariant under avbi-
trary (unimodulay) spin transformations.

This problem is equivalent to finding all tensors A#/
satisfying (1.2) and
A —A¥( p .k

H ’
(@) (a)®'? (q)erde

(1.8)

where A¥ are scalars under arbitrary proper Lorentz
transformations. Skew-symmetric tensors satisfying
(1.2) and (1. 8) are known:® however they are not scalars
under arbitrary proper Lorentz transformations,

It is clear from (1. 6) that every spin—tensor which
is a concomitant of g;; and its partial derivatives is
always a concomitant of 0,,. and its partial derivatives.
If the converse to this were valid, then the above prob-
lem, viz. (1.2) and (1.7) would immediately reduce to
(1.2) and (1. 3), and so, without further calculation (1.4)
would follow. Unfortunately a proof of the converse does
not seem to exist in the literature.

The spinor notation which we adopt here is essentially
that of Pirani.® From (1. 6) it can be shown that the
following is an identity (Schmutzer’):

gsAY? ObBY' OcBX’ - %(g“b(JCAX' +gbcoaAX'

_gaocrbAX’ + ieabcdchX' ). (1 . 9)

If we define $°%,® and S°b,, 'by
subAB: oaAX' O.bBX’ - o-be’ OGBX' s (1. 10)
ST =08, L, PAY b oA (1.11)

then repeated application of (1.9) gives rise to

Copyright © 1976 American Institute of Physics 1001



OrpysS* B + 04y 1S, ¥ =2(8%0° , 4, — 530%,,0). {1.12)

2. CHARACTERIZATION OF A™

Because the A% are assumed o satisfy (1.7) and to
be the components of a type (2,0) tensor under arbitrary
coordinate transformations, certain invariance identi-
ties® must be satisfied, one of which is

A'rs;aAX'.bc+Ars;cAX',ub+Ars;bAX',oa___0 2.1)

where ArsiedX’sbe—Ars/3g , ., .. iS a spin—tensor sym-
metric in bc.

The invariance of A¥ under spinor transformations
also gives rise to invariance identities,® two of which
are

A"S;tAX' 'Cdo'tBXl :%534478; tcx"dctcx' » (2 2)
and
ArsifAXiedg, o LpX ATSitAZ g, (2.3)
If we define the spin—tensor A7siab:d 1y
Arsiabiod _ ArsicAX’ .cdgb (2.4)
then (2.1) gives rise to
Arsiabsed 4 Arsidbac . ArSichda — (), (2.5)

If we multiply (2.2) by 5272, (2.3) by $¢%,,¥ and add
the resulting equations we find, by virtue of (1.12),

Arsiabicd - Arsidaacd (2.6)
From (2.5) and (2. 6) it is easily seen that
Ars;ab,cd :Ars:cd.ab. (2. 7)

Up to the present, no use has been made of (1,2),
which in view of (1.7) can be expressed in the form
ArsicAX* ol (2.8)

caAX' +O (G AX" anl b' GQAX',bc):O‘

Differentiation of (2. 8) with respect to 0,,  thus
yields
Ars;aAX‘.cd 4+ Ard; aAX’,sc+ Arc;aAX',ds — 0,

which, by (2.4), is equivalent to

Arsiabsod  Ardiabssc 4 Arciabeds — () (2 ., 9)

If we define A7siobicditiskl 1y

Arsiabscdiif ki _ (aArs;ab,cd/ao-wY‘ ,hz)quY' s (2.10)

and note (2. 4), we see that

Ars:ab,cd:‘lj 1) :Ars:ij ,kl;ab.cd'

(2.11)

Elsewhere! it has been shown that, in a four -dimen-
sional space, if AvSiebicdiliskl j5 any quantity which has
the properties (2.5), (2.6), (2.7), (2.9), and (2.11) then

Arsiabyediif okl (. (2.12)

[An alternative proof of (2.12), which readily suggests
generalizations to higher dimensional spaces, is
presented in the Appendix. ]

A comparison of (2,12) and (2. 10) establishes that
Atiiabiod jg independent of 0,4y, ,,, Which, in turn, im-
plies that A¥ie®:e? ig also independent of 0,5, ,,° i.e.,
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Arswabred Braabcd(o-mxl)’ (2. 13)

where Breebed ig 3 gpin—tensor with the same symmetry
properties as Arsfebed viz, (2.5), (2.6), (2.7), and
(2.9).

From (2.4) and (2, 13) we thus find

rs;aAX’ yod sabed oy AXY
Arsiafiiicd . greabedg AL

which, upon integration, yields
ATs Brmbcdo- AX* UaAX' Cd+C"‘ (q AT uAX',b) (2.14)
From (1.6) we see that

AX* AX'
[ + c, UMX'

8ab,ca = %ax’,ca% + Ogpea(Oraxe 01axe )-

When this is taken together with (2. 14), it gives rise to
Ars =g Braubedg ot DO 103050 0),

which can be reexpressed!® in the form

1
ArS =3 BTYIR Gy + B (O u 50 1 Opne )

where B"® is now a spin—tensor, which is therefore
independent of ¢_, 4. ;, i.e.,

Ars:%BrsabcdRmM,;_st(omx,)‘ (2.15)

All spin—tensors B'S = Brs(q,,,) have been constructed’
the result being

:bgrs’

where b is a real constant.

(2.16)

Consequently, the problem of determining A" has re-
duced to the evaluation of the spin—tensor Brsebed where
Breabed _ prsaved(g, , ..} and where Br®*** satisfies (2.5),
(2.86), (2.7, and (2.9). To do this we proceed somewhat
indirectly, as follows,

It is easily seen that, because of the symmetry prop-
erties of Brésbed

Brtaicj 5sbd

from which we obtain

2(Brsabcd 4 Brbades | Brdascb)

Briafes 5shd + privics psad + Br:n¢a/5sbc+ Brivias 5sac 19 Brsabod
(2.17

If we define
ﬁalc:_éennBﬂuici’ (2.18)

and recall that

03 =~ ey,

we see that (2. 17) reads

Brsabed — Esbdlﬁralc + Gs“d'ﬁrb,c +¢5 bclﬁ”,d + esaczBrbld. (2.19)
Consequently a knowledge of ¢,° determines Brsebed,

From {2.18) we note that

gec=ge. (0, ) (2.20)
and
gre o= -gres (2.21)
gal=0 (2.22)
We now define
I.M. Anderson and D. Lovelock 1002



— 3 C
Bapcoxtyrzrw = %eax Ounyr Oocz Cpwe %% (2.23)

in which case (2.21) and (2, 22) imply
(2.24)

Bagpcpxryrzrw =~ Bacapxrzevrwe s
and

(s 4
BD Y* W

(2.25)

€ Bapcpxryrziw =0,

respectively. From arguments similar to those
presented in Lemma A3 of Ref. 9, we find by virtue of
(2.24) and (2.25)

Bancoxsyrzew = iclepctap Exe prézop +exogibyrp)
—€yezeExomn (€anéop +eacenn)],

where ¢ is a real constant. The latter is substituted in

(2.23) which is then solved for g°, (1.9) being used

repeatedly in the process, this giving rise to
Bralc:%aeracmglm’ (2.26)

where a is a real constant. Equations (2.16), (2.19),
and (2. 26) are now substituted in (2. 15) to yield

ATS..__.aG’rS + bgfs.
We thus have the following theorem,

Theovem: If A" =A™(0 4 4,104 %0 4} 0,ax0,0) £ @ Spin—
tensor and

then
AT$=aG"* + bg"®
wheve a, b are constants.

Consequently, we see that, even in this case, the
symmetry of A [and hence of 77¢ by (1.1)] is again an
inevitable consequence,

APPENDIX

The purpose of this appendix is to outline an alterna-
tive derivation of Eq. (2.12) which explicitly exhibits
the role played by the dimensionality of the space. We
begin by introducing quantities a,, and B8, B which are both
assumed to be symmetric in their indices but are other-
wise arbitrary, and consider the expression

riyiad ol 341, hi 58 b d i b
R IR R O ST WY
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By expanding the Kronecker delta and by repeatedly
invoking the symmetries of Arsiedieditishk yiz (2,5),
(2.6), (2.7, and (2.9), as well as the symmetries in-
duced by the expression @,,a.,8,.8,, a lengthy, but
nevertheless straightforward calculation, shows that

ri jatsict il hi g8 b d ik
Artyiataictgilahis by it ot at s Xav X odBis B

(A1)

This equation holds irrespective of the dimension of
the underlying space. However, for n=4, the left-hand
side of (Al) vanishes identically in which case it is
easily seen, on account of the arbitrary nature of the
a,, and 8, that

— %[4Ars:ab.cd;u shk 4 A7SH ab,ij;cd,lk] aabachUBhk'

8Ars;ab,cd;i,l shR Arsiab, i shk,cd + Ars;ab,hk;cd,lj — 0. (AZ)
By successively interchanging the pairs (cd), (i), and
(hk) in (A2), it thus follows that

Arsiabsediismk —

as required,
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Scaling of the form x = ax', t = a"f, ¢ = a™Q of a nonlinear partial differential equation for g is
connected with the form of the auxiliary functions in an inverse scattering method (AKNS scheme).
Solvability of an equation by this scheme is treated. It is shown that only equations with m =2 are solvable
by using the method of inverse scattering in conjunction with the Schrddinger eigenvalue equation. The
criterion m = 2 restricts the form of the terms in these equations. The terms, powers of g and its
derivatives, can be found by inspection. A separate problem, the decay of a single soliton in the Korteweg—de
Vries equation with damping, is solved using only scaling properties.

1. INTRODUCTION

Many nonlinear partial differential equations are
invariant under scaling. An example is the Korteweg—
de Vries equation! (KdV)

g, +12¢g, +q, . =0. (1.1)
The scaling
x'=ax, V=d%, qlx,ty=amQx’,t), (1.2)

with the choice

h=3, m=2,

leaves (1.1) invariant., The scaling has been used to
find polynomial conservation laws,2°

Here we will give some other consequences of this
scaling invariance, and give some examples. In Sec, 2
scaling in the formulation of Ablowitz ef al.* (AKNS
scheme for short) is treated. Assuming a scalable
equation, it is shown that only terms of a certain type
can occur in the various auxiliary polynomials. It
should be stated here that some nonscalable equations
are exactly solvable in the AKNS scheme. Such equa-
tions are not treated. A restriction is found for solvabil-
ity of a scalable equation. In Sec. 3 we prove that a
scaling invariant equation can only be solved by an
inverse scattering method on the Schrodinger equation
when m =2 in (1.2). This determines the type of terms
in that equation, It is expected that possible higher or-
der inverse scattering schemes have similar properties.
Nonlinear partial differential equations often describe
some physical situation to a first order approximation
in some small parameter. Dissipation of energy (damp-
ing) can be an important higher order correction to the
equation. As an example, the KdV equation with damp-~
ing is treated in Sec. 4. The functional form of the time
dependence of a single soliton is shown to depend only
on the power in the damping law. Only the scaling prop-
erties are used in the derivation.

2. SCALING IN THE AKNS SCHEME

Some nonlinear partial differential equations can be
solved exactly by an inverse scattering method with the

set of linear equations®
Uy, t iU = quy, Vg — 1E0= 704, 2.1
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where
(2.2)

For equations invariant to a shift in x and ¢ the functions
A,B,C, and » are functions of x and ¢ as functionals of
q,q,, ***. They can also be functions of the parameter
Z. The nonlinear equation of interest is one of the
consistency conditions of (2.1) and (2.2), obtained by
cross differentiation

vy, =Av, + Bv,, v,,=Cv, - Av,.

q,—2Aq-B_ ~2itB=0. (2.3)
Two other conditions are

Ax—_—qC-—rB, (248.)

C.=7,+ 24y +2i¢C. (2. 4p)

For A, B, C, and » we choose polynomials in ¢, ¢,
., and . In addition, the equation for », (2.4b),
has to be consistent with (2. 3).

The scaling (1.2) leads to restrictions on the type of
terms we can have in these polynomials. Without loss
of generality we can take for the scaling of the new
quantities in (2.1),

v, =a’ V(&' 1), v,= V0, ),

(2.5)
t=aZ, r=a"R(x’, ).
Equation (2.1) is invariant if we choose for j and n
j=m~1, n=2-m. (2.6)

Equation (2.2) is also invariant, and A, B, and C scale
as
A=adA QW ,1"),Q, ...,2),
B=a"iBNQ,Q., ...,2),

C=a~C"Q,Q,...,2).

x?

2.7

A, B, and C are homogeneous functions of a. Often A,
B, and C are polynomials in ¢, the derivatives q,,q,,,

., and ¢. In this case each term in the polynomial
must have the same scaling power as the polynomial
itself. This determines the type of terms that can occur
in this polynomial. The terms in polymial conservation
laws can be found this way.

As an example, consider the KdV equation, for
which m =2 and h=3. It follows that j=1,
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A=a,*+ a,tq + axq,,

B:b1§4+b2§2q+b3§qx+b4q“+b5q2, (2.8)

CZCI§2+C2q,

and 7 is constant, as its power n=0. These are indeed
the terms that appear. The complex coefficients a,,
. , ¢, can easily be calculated.

For the nonlinear Schrodinger equation [Eq. (2.14)
with s =2], m=1 and k=2. We find for A

A=a,t%+ a,tq + a6q* + aqq* +a5qx+a6q:. (2.9)

B and C contain the same terms, as the parameter j=0.
For », with parameter n=1, we have

r=d,E+dyq + dsg*. (2.10

Not all terms actually appear, as (2. 3) and (2. 4) give
additional restrictions. The MKdV equation [Eq. (2.12)
with s =2] also has the forms (2.9) and (2.10).

The different terms in the equation for u=v,/v,,
can be obtained, However, not all terms have the same
invariance properties under the transformation (u, ¢)
= (+u,+ ¢£*) used in the derivation of Bicklund transfor-
mations,® so the Backlund transformation cannot be
found by inspection. If it exists, it has the right scaling
properties (compare the explicit forms in Ref. 5). This
scaling of the Backlund transformation was known
earlier for the sin-Gordon equation. ®

The homogeneity of A, B, and C has another con-
sequence. Successive partial differentiations of for
example A, with respect to the continuous parameter a
(@,x’,t’ and Z fixed) at a=1 (Euler’s theorem) gives

24 A JdA
n + + 1 + o0 o:hA
g—ag mq —aq (m )q, 2q, ’
824 %A 8%A 4
2 + +mPg* = +2 +1
Cop Fimtag o e mim + )gq, 390,
+eeo=p(h-1)A, (2.11)

For h positive and integral the rhs is zero after & dif-
ferentiations. For positive integer m this can only
happen if each of the partial derivatives is zero. Thus
A, B, and C are polynomials ingq,q,, ..., and ¢. If

m =0, all terms except the ones with ¢ have to be zero.
A can then be an arbitrary function of ¢, times a func-
tion of ¢,, . . ., and £. This is the case for the sin-
Gordon equation.*'” For m = ~ 1 we have the same
property with ¢_.

The above can decide whether a given equation fits
the AKNS scheme. For example, for a generalized KdV
equation

g, +2(s +1)(s +2)/s%q%, +q,.=0, (2.12)

with s = 3,® the parameter m = 4. With (2. 6) we have
j=3 and n=-2. B is of the sixth order in @, and has to
contain a term ¢°/2
But then the sixth partial derivative with respect to ¢
does not give zero, (2.11) is violated, and we conclude
that (2.12) does not fit in the AKNS scheme.

If the order s in (2.12) is greater than 2, we have

the noninteger scaling
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. This gives the term ¢'/%g_in (2.12).
q'°q,

(2.13)

Similarly, the equations with s > 2 do not fit the AKNS
scheme, B is of order 2+2/s in ¢, and contains a term
g*'. The rhs has noninteger power, and does not vanish
after s + 1 differentiations. This excludes a polynomial
for B. The same is true for higher order nonlinear
Schrodinger equations

ms=h-1=2, m=2/s.

iq, +q,,+2(s +2)/s%|q|%¢=0. (2.14)

Here A has a term g%, giving |¢l%g in the equation.
After h differentiations the lhs still contains a term
q**, and (2.11) is violated.

Another way to decide whether a given equation fits
the AKNS scheme uses the conservation laws. An equa-
tion that fits the AKNS scheme has an infinite number of
these. " It is easily verified that there is one for each
scaling power,

I(g)=a"I|(Q).

Some way be trivial, for example, the even ones for
the KdV equation.

(2.15)

Conversely, an equation that does not have the
sequence (2.15) does not fit in the AKNS scheme. It is
relatively straightforward to find a nontrivial conserva-
tion law with a given scaling, if it exists. By verifying
the first few conservation laws we can see easily if a
given equation fits the AKNS scheme. As an example,
for the generalized KdV equation (2.12) we find conser -
vation laws of power 2/s -1 and 4/s - 1,

2 2
5?12/3-1=§/q dx=0, (2.15a)
] Gl
a—tl‘“s_l:ﬁfqz dx=0, (2.15b)
but a conservation law with power 1,
3 -D(s-2
T qsdxz—%/qs“q;dx, (2.15¢)

only exists for s=1 and s =2. As seen above, (2.12)
for s=1/2 or s >2 does not fit the AKNS scheme.

3. EQUATIONS SOLVABLE BY THE INVERSE
SCATTERING METHOD FOR THE SCHRODINGER
EQUATION

From (2.1) we have
3.1)

This is the Schr6dinger equation for an inverse scat-
tering method, with »¢ as potential, if ¥, is zero.

Vaer T (8% —vq)vy + 7,0, =0.

Then the parameter n is zero, and we have with (2. 6)
(3.2)

So only equations with scaling parameter m =2 can be
solved by inverse scattering on the Schrodinger equa-
tion. The parameter % is not determined by this argu-
ment, The terms in the equation for ¢ are now com-
pletely determined for given k. As the first example,
for 2=3 we find the terms of the KdV equation (1.1).

n=0, m=2, j=1.

For =5 we have the form

qt +P1q2qx + (quqxxx + P3qqux)+ qxxxxx = 0’
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where terms transformable into one another have been
grouped together with parentheses. We can establish the
terms in A, B, and C, as done above, and calculate

the constants p with (2. 3) and (2. 4). This gives

(3.4)

Equation (3. 3) is identical to the one given by Gardner
et al.’ (p. 132), after an independent scaling of ¢ and ¢
to change the coefficients. The next one, for k=17, is
obtained in a similar way. With »= -1 we find

P,=3¢P,, P,=2P,.

g, +110¢°q, + 70(g%q, . + 4qq,4,, + q,°) + 14(agy + 39,41y
+ ququxx)+qVII:0' (3 5)

(The roman subscripts denote the number of x deriva-
tives.) Existence of these equations is not guaranteed by
scaling alone, as the recursion relations for the co-
efficients of the terms in A, B, and C which follow from
(2.3) and (2. 4) are overdetermined.

Another way of calculating the coefficients in (3. 3) is
with the conservation laws. The terms in the conserva-
tion laws only depend on m, but the coefficients can
differ with the different equations. As we want (3.3) to
be exactly solvable we can assume the same conserva-
tion laws as for the KdV equation. From (2. 15b) we find
the last ratio of (3.4), and from the next conservation
law

I=[(g°+ bg?) dx,
P,=—(3/2b)P,, P,=-15/3b.

With the coefficient b=~} as for the KdV equation we
have the first ratio of (3.4), with »=-1and P,=10,
The coefficients in (3.5) could be found similarly. We
then have to use 7, also.

(3.6)

4. DAMPING IN THE KdVv EQUATION

The KdV equation with damping will be treated in this
section, as a different application of the scaling prop-
erties. Energy dissipation, accounted for by damping,
is an important higher order effect in some physical
applications of the KdV equation. !° If the damping is
weak it can be taken into account by damping each
Fourier mode separately.!! Our example, the KdV
equation with damping, is

q,+12qq +q .+ FT-{¥(k)g(k)]=0.

FT denotes Fourier transformation, (k) is the damp-
ing, and ¢(k) is the Fourier transform of g(x,). A
stationary soliton solution of the equation without damp-
ing will now decay slowly. We will show, by a simple
scaling argument, that the time dependence of the decay
only depends on the power d in the damping law

rik)=¢e|k|?, e<1.

The soliton balances nonlinearity and dispersion. As
these are the dominant effects, we expect the soliton to
keep its functional form

1
~cosh®(x — 41)

4.1)

(4.2)

Q + 0fe). (4.3)
We assume!®'!! that the weak damping slowly changes the
scale a, a=al(t), of the scaling (1.2). The decay of the
soliton can then be found by!'2 the equation for the energy
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of the soliton part,

(4.4)

% qzdx+47rf (R q(k)|2dk =0.

The calculations are now simple. For the Fourier
transform g(k) of g we have the scaling, with (1.2) and
m=2

q(k):a"‘"Q(k’)z—z—l; f g(x) exp( ikx) dx, 4. 5)

B =k/a.

Then an equation for a(¢) follows, using the scaling (1, 2)
and (4.5),

da Be

et e S ) §
at ~ AEm-DT (4.6)
where A and B are the constants
A= [ @ax' =4r [~ |Q®")|2dr,
0
_ ®\pr|d 2
B=d4n [” &' [*| Q)| *dk’. 4.7
The solution of (4. 6) is
a(0)
= 4.8
=T +ent)/d .8)
_a*(0) B
V=em-1Da%

together with the limiting case of exponential decay
when d=0. The manner of decay is only determined by
the power d in the damping law, and not by the various
parameters in the undamped equation, or by the initial
condition. These énter only in the constants,

The constant B/A can be calculated by taking the
Fourier transform of (4. 3). It follows that

B T(d+3)t(d+2)

A T2

where { is the Riemann zeta function. The result (4. 8),
with the constant (4.9) and m =2 contains the four cases
treated before, !

(4.9)

The calculation proceeds in the same way for other
nonlinear equations with damping {or growth) terms.
Examples are the generalized KdV equation (2.12),
for s# 4, and the nonlinear Schrodinger equation.

CONCLUSIONS

Some implications of the scaling (1.2) have been
treated. Scaling both explains the form of the various
auxiliary functions in the AKNS scheme, and yields the
various equations solvable by the inverse scattering
method using the Schrodinger equation. Possibilities
for their terms can be found by a simple inspection.
Solvability of an equation in the AKNS scheme is re-
stricted by the scaling properties. In a separate applica-
tion of the scaling properties we have shown that the
time dependence of the decay of a single soliton in the
KdV equation follows from scaling only.
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On the Schrodinger equation in fluid-dynamical form*

C. Y. Wong

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
(Received 9 October 1975)

The fluid-dynamical form of the Schrodinger equations is studied to examine the nature of the quantum
forces arising from the quantum potential of Madelung and Bohm. It is found that they are in the form of
a stress tensor having diagonal and nondiagonal components. Future studies of these quantum stress
tensors in a many-body system may shed some light on the mechanism of spontaneous symmetry breaking

and the generation of vorticity in many nuclear systems.

1. INTRODUCTION

It is well known that the time-dependent Schriodinger
equation can be written as an equation of continuity and
another equation analogous to the Euler equation in fluid
dynamics, as was first pointed out by Madelung® in 1926.
Recently, there is considerable interest in studying the
dynamics of nonrelativistic single-particle? and many-

body®* systems by making use of such an analogy. It can-

be shown®* that starting with the time-dependent
Hartree-—Fock formulation of the many-body problem,
one can again obtain conservation laws of the classical
type for the macroscopic density field n(r, ) and the
velocity field u(r, #), the difference being the presence
of force terms of quantum origin, In this note, we wish
to examine these forces arising from the quantum poten-
tial of Madelung' and Bohm® and show that they are in
the form of a stress tensor having diagonal and non-
diagonal components. Such an understanding will provide
some help in formulating a macroscopic theory of a
many-body quantum system,

Il. TIME-DEPENDENT SCHRODINGER EQUATION
IN FLUID DYNAMICAL FORM

The results of Madelung can be breifly stated. The
time-dependent Schridinger equation

zp(r )= _ﬁ-vzzj)(r 1y + V(r, Hy(r, £) 1

is equivalent to the following set of equations:
W(r, t) = ¢(r, £) explimS(r, 1)/ - iQUL) ], (2)
%¢2+v.(¢2vs)=o, (3

and

- (##/2m) V3¢
— + vv), (4)

where without loss of generality, the functions ¢, S, and
Q can all be taken to be real functions. Here and hence-
forth, for conciseness of notation, the independent vari-
ables r = (¥, X5, x;) and { are suppressed unless indicated
otherwise. The factor — (#%/2m)V2¢p/¢ which appears

on the righthand side of Eq. (4) is known as the Bohm
potential in the theory of hidden variables.®

3 1
—_— + ° = o —
T, VS +(VS-V)VS po (v

Starting with Eq. (4) and with the help of Eq. (3), we
get
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g—t (¢2v,S) +Zj‘zV,~(¢zvisvjs)

_i 2 "'(WZ/Z?/??)VZQ5
(“’ Vi

m

+ ¢2viV), (5)

where V; is the gradient operator in the x; direction. It
can be shown easily that

9" (VTZ:Q) =Vi(zv%¢%) -

In consequence, Eq. (5) becomes

22V§(V~;¢V1¢)e (6)

m—(¢, v,8) +Z/V,(m¢ VSYS+p) == 02V, ¥, ()

where o=

~ (12/4m) V2¢26,; + (P /m) V6V, . (8)
If we interpret ¢®=n as the density field, VS as the
velocity field, then one recognizes Eq. (3) as the equa-
tion of continuity and Eq. (7) as analogous to the Euler
equation in fluid dynamics. The superscript ¢ in the
stress tensor p{?’ indicates that this is a stress tensor
of quantum origin (being proportional to #%), and we
shall call it the quantum stress tensor. Each diagonal
component of the quantum stress tensor consists of two
terms, one proportional to the Laplacian of the single-
particle density, and the other to the square of the gra-
dient of the wavefunction. The nondiagonal components
of the stress tensor are proportional to the product of
their respective directional gradients of the wavefunction
and are, in general, nonzero.

It is of interest to examine the effects of the quantum
stress on the density distribution. The diagonal elements
P, p&, and p’ are the quantum pressure in different

directions, and they need not be equal. In addition, it

is generally nonuniform spatially. The nondiagonal com-
ponents are shear stresses, and they tend to create vor-
ticity if they are not balanced. A stationary state is ob-
tained when the pressure and the shear stress are coun-
terbalanced by the force $2VV arising from the poten-
tial V. In this case, the cancellation of the shear stress
is due mainly to the nonuniformity in ¢ which produces
large force density gradients.

I11. APPLICATION OF THE FLUID-DYNAMICAL
FORM OF THE SCHRODINGER EQUATION

We shall discuss below the application of the fluid-
dynamical form of the Schrodinger equation in a many-
body fermion system in the Hartree—Fock approxima-
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tion. The case of a more general treatment of the many-
body problem will be discussed elsewhere.

In the time-dependent Hartree—Fock approximation,
a many-body fermion system consists of a collection of
particles occupying single-particle states whose wave-
functions ¥, (r, f) satisfy the equation’
ﬁa
==9. VZ zpa (l‘,

Zpa (r t) + Va (l‘, t) d)a (l‘, t); (9)

where

Valr, )= [ dr, [E Ya(ra, Yy, Do(x, 1)
8

- % ‘Pé"(rz’ t) ZPB(r) t)’U(I‘, rz) d)a (rZ’ t)/wa (I‘, t):l .

(10

In Eq. (10), »(r, r,) is the two-body interaction and the
summation is over the set of occupied states. Equation
(9) is in the same form as Eq. (1) with the exception
that because ,(r,?) is, in general, complex;, V, of Eq.
(9) has both real and imaginary parts. One can follow
the same procedure outlined in Sec. I by writing the
wavefunction in terms of the amplitude and phase
factors:

Yo (r, t) = ¢ (r, t) explimS, (r, 1) /5 - iQ, (1) ]. (11

After substituting Eq. (11) into (9) and separating the
resultant equation into real and imaginary parts, one
obtains equations analogous to Egs. (3) and (4):

2
az;};a +V-(¢§Vsa)=%¢§lmva (12)
VS, +(VS, - V)VS, = _% (V%[— (ﬁ;/zZm)vz%]
+VReVa (13)

Combining Eqs. (12) and (13), one obtains the analog of
Eq. (5)

- ($29S,) + V- ($2 95, VS,)
—_ 1 ¢a [— (ﬁz/zm)vzq)a]
= {V 7T

+ VReVa}

2
+%¢§‘VS"‘ ImV,. (14)

After summing Eqs. (12) and (14) over all the occupied
single~particle states, we get

2
a—t§¢i+\7- 22VS, =0 (15)
a
and

] .
a—tZ¢§,V$m+V-Z¢§VSmVSa

= {Z 2 V—z- + Z P2 (r]_[dsfrzv,v(r, rz)E ®Z.(r,)

- fdsya[vrv(ry l‘a)] IZ‘I lpu (1‘) J(rz) |2}, (16)

where 7, = [~ (iZ/2m) Vi, lo
sity function

«+ Upon introducing the den-
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n(r, ) =2 ¢2(r, 1), (17)
[
and the average velocity u
u(r, £) =2 ¢2(r, ) VS, (r, 1)/ 205 (x, 1), (18)
o a
we get the equation of continuity
on
—+ . =
ap TV =0 (19)

We introduce the Dirac one-body density matrix &/ (r, r,)

Ny v = 2o (r, D)2 (ry, ). (20
Then Eq. (16) can be written as
a%zqsgvsa +v .qugvsavsa
:-—(Z,cpav +nfd3'rzn(rz)vrv(r T,)
- fd"rzl/\/ O(r, r,) |29,0(r, r2)> . (21)

Equations (19) and (21) are the same as what we derived
from time-dependent Hartree—Fock equations in density
matrix form.?

We note that

55, _ Se ) (25
2 nu,u,+z¢a<ax u,) (axj—uj>. (22)

Tetge 2%

Equation (21) can therefore be written as

P& +p1)

nu‘u, =—= Z,

nu +Zz
iyt i 0%,

d
- % fdarz n(r,) 5‘;;1)(1‘, r,)

+':,L7l' f‘{d1’2| N(l)(r) 1'2) ‘25'%11(1', rz),
(23)

where we introduce the thermal stress tensor p{¥’ in
analogy with the kinetic theory of gases [as suggested

by Eq. (22)]

and also the total quantum stress tensor p %’
7 7t
P == g 0u Vit L (Vi0a)(464). (25)

The analogy between Eq. (23) for the many-body system
and the classical Euler equation is now clear.

We note in passing that the quantum stress tensor can
also be given in two other different forms:

e
P __Gljvn"_z(pav Vj(pou

(26)
and
;[2 h—z
éi)z—ﬁz%‘vivj%‘ +-2—m—2(vi¢m)(vj¢a)- (27
o (3
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V. DISCUSSION

From the fluid-dynamical form of the Schrodinger
equation we obtain a simple description of a many-body
quantum system in terms of the macroscopic density
field n(r, t), the velocity field u(r, #) and the coupling
between the macroscopic and the microscopic degrees
of freedom. A complete macroscopic description can
be made by examining p{¢’, p{¢’, and the exchange term
and finding plausible approximations for these quanti-
ties.? Such a description has its application in studying
the dynamics of two heavy nuclei in collision,

On the other hand, the description in terms of both
microscopic and macroscopic variables as is expressed
in Eq. (23) can be of some help in other types of prob-
lems. For example, as is well known, many nuclei in
their ground state have nonspherical density distribu-
tions (spontaneous symmetry breaking). In this static
case, the left-hand side and p{’ in Eq. (23) are zero
and the equilibrium density distribution is obtained by
balancing the forces due to the quantum stress tensor
p33 and the internucleonic forces. One may wish to in-
vestigate whether indeed for these nuclei the quantum
pressure is so anisotropic and nonuniform as to distort
the system to its nonspherical ground state.® The possi-~
bility of a strongly anisotropic and nonuniform quantum
pressure also makes it interesting to study the density
distributions of liquid *He at low temperature in small
assemblies.
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The nondiagonal components of the quantum stress
has its effect in those nonequilibrium phenomena in
which the quantum shear stress cannot be completely
counterbalanced by the force density nVV. In conse-
quence, vorticity may be created. Such an effect has
been studied in great detail by Kan and Griffin® for a
single-particle Schrodinger fluid. Future investigations
on the formation of vorticity along the lines of Kan and
Griffin for a many-body system will be of great interest.
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Nonlinear differential-difference equations and Fourier

analysis
M. J. Ablowitz*
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The conceptual analogy between Fourier analysis and the exact solution to a class of nonlinear differential-difference
equations is discussed in detail. We find that the dispersion relation of the associated linearized equation is
prominent in developing a systematic procedure for isolating and solving the equation. As examples, a

number of new equations are presented. The method of solution makes use of the techniques of inverse

scattering. Soliton solutions and conserved quantities are worked out.

. INTRODUCTION

Many interesting physical phenomena, such as ladder
type electric circuits, ! yibration of particles,? collapse
of Langmuir waves in plasma physics, ? to cite a few,
can be modeled by nonlinear differential-difference equa-
tions. Unfortunately, due to the inherent difficulties of
nonlinear problems, most methods of solution apply only
in special circumstances. The usual techniques of in-
vestigation are to make use of a small parameter ina
perturbation analysis, or else to linearize the problem
completely. In either case, certain important features
of the full nonlinear problem are lost. For a class of
physically interesting nonlinear problems this difference
can be remedied by an exact method which makes use
of the technique of inverse scattering first discovered
by Gardner, Greene, Kruskal, and Miura**® in their now
classic work on the Korteweg--de Vries equation (KdV).
They showed that a key step in developing the exact
method of solution was the intimate relationship between
the KdV equation and a linear scattering problem, the
Schrodinger eigenvalue equation,

The work of Zakharov and Shabat® definitely showed
that the method developed for KdV was indeed no fluke.
Employing techniques due to Lax,” they showed that the
physically interesting nonlinear Schrodinger evolution
equation was associated with a new eigenvalue problem.
They were then able to solve the evolution equation by
inverse scattering. Subsequently, Ablowitz, Kaup,
Newell, and Segur® discovered a scheme which both
isolates and solves a class of nonlinear partial differ-
ential equations. Included in this class are the nonlinear
Schrodinger, KdV, modified KdV, and Sine—Gordon
equations. In Ref. 8 the important role of the dispersion
relation of the associated problem is discussed.

It is significant that these ideas apply to certain types
of discrete evolution equations. Flaschka® has shown
that the Toda lattice equation® is related to a discretized
Schrédinger eigenvalue problem. By employing an in-
verse scattering analysis similar to that of Case and
Kac'’ and Case, ! he was able to solve the equation.
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Similar results were also found by Manakov.'? Motivated
by these results, Ablowitz and Ladik'® proposed a new
discrete eigenvalue problem, an appropriate generali-
zation of a discretized version of the eigenvalue problem
of Zakharov and Shabat, as a basis for generating sol-
vable discrete equations. They found that the nonlinear
self-dual network and Toda lattice equations were the
important equations. These equations are second order
in time systems. In this paper we will work with the
same eigenvalue problem as in Ref. 13. However, we
find that in addition to a class of second order in time
systems there is also a class of solvable first order in
time systems. Included in this category are discrete
(differential—difference) versions of the nonlinear
Schrodinger, KAV, modified KdV, and “sine—Gordon”
equations. In addition, the inverse scattering analysis
presented in Ref. 13 must be suitably modified to handle
these first order in time systems effectively. We ex-
plain how to accomplish this, present the soliton solu-
tions, and discuss how one can use the scattering equa-
tions to obtain an infinite number of conserved quantities.

Beyond this, however, we wish to convince the reader
that the procedure is, in essence, analogous to discrete
Fourier analysis. Let us begin this task by writing down
a general linear differential—difference equation,

U, == iw(B)U,, (1.1

where E is the shift operator EU, =U, ;. Hence if we
take w(E)=(E+E*-2), (1.1) is equivalent to

iUnt = Uml + Un-l - 2Un° (19 2)

[(1.2) is an equation which we shall discuss in detail
later in this paper, as it is the linear portion of the
discrete nonlinear Schrodinger equation. | We will refer
to w(E) as the dispersion relation.

The exact solution of (1.1) is obtained by discrete
Fourier analysis. Defining the transform pair
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1
Uln, L‘):E-T;;j‘b(z,zf)z""1 dz, (1.32)

bz, ) =230, Bz, (1. 3p)

where the loop integral in (1. 3a) is around the unit cir-
cle, the reader can verify that b(z, f) satisfies
b(z, 1) =b(z, 0) exp[~ iw(2)t]. (1.4)
Hence we have a quadrature solution to the initial value
problem [U(n, 0) is assumed to decay sufficiently rapidly
as [nl==]. Conceptually, the steps in the solution pro-
cess can be summarized as follows. At {=0 we are
given U(n, 0). We then find the Fourier transform at the
initial instant, 4(z, 0). For all later times Eq. (1,1)
yields the simple relation (1.4) for b(z,¢), whereupon the

exact solution Un, t) is given by (1. 3a). Schematically
we have

Uln, 0) = b(z, 0) & b(z, £) = Uln, ).

In the nonlinear case the key step is to first make an
association between the evolution equation and a linear-
eigenvalue (scattering) problem. In this paper the evo-
lution equations are all related to the following scatter-
ing problem!?:

Vi, =2Vy, TRV, +S,() Vo oo

" (1.5)

Ve = (1//Z)Vz,l +Rn(t)V1" + Tn(t)V1m1 .

The various equations are distinguished by the associat-
ed time dependence,

Vlnt :Anvln + BnVZH!
(1.6
Va, =CaVs, + D,V .

Corresponding to each nonlinear evolution equation
U, =N(U,) is a set of functions 4, ..., D, (depending in
general on @, R,, S, T,) with 3z/3/=0, such that (1.5)
and (1.6) have as their integrability condition U, =N(U,).
Typical, is the differential—difference nonlinear
Schrodinger equation,

z'U,,t:Und + U,y =20, s UXU(Upq +Upa), (.7m
where U* is the complex conjugate of U,. In the deri-
vation of (1.7) R,=U,=%Q¥, S,=T,=0. In general the
potentials @,, R,, S,, T, appear in the evolution equa-
tion as dependent variables. We shall present a method
of finding the 4,, .. ., D, corresponding to each evolution
equation. The crucial quantity which makes the isola-
tion of each equation both natural and straight forward
is the dispersion velation of the associated linearized
problem. For example, the linearized form of (1.7) is
(1.2). In Sec. II we shall show how the linear dispersion
relation w(z) =z +1/z = 2 is used to enable us to deduce
(1.7,

The solution procedure is as follows. At f=0 we are
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given the initial conditions for the evolution equation,

in this case U,(0). The scattering problem is then solved
for the “scattering data” at the initial instant: S(z, 0)

(the discrete eigenvalues, the “reflection coefficient,”
and bound state normalization constants). For later
times even though the potentials evolve according to
nonlinear differential—difference equations, the scatter-
ing data satisfies very simple relations. In particular,
the discrete eigenvalues are time independent and the
time dependence of the other portion is proportional to
exp[~iw(z®t]. Thus we find the time dependence of the
scattering data S(z, f) is related to the dispersion rela-
tion of the linearized problem. Then, given S(z,?), one
recovers the solution of the evolution equation by mapping
back to physical space via the inverse scattering equa-
tions. Schematically for U,(f) the process can be sum-
marized as follows:

U.(0) =S(z, 0) £5(z, £) = U, (£).

The procedure is analogous to Fourier analysis. Here
the scattering data plays the role of the Fourier trans-
form (1.3b) and the inverse scattering equations play
the role of (1.3a).

In Sec. II we show how to isolate the various inter-
esting equations. We go through the example problem
(1.7 in detail, and simply list the others. For alge-
braic ease we will take S,=0, T,=0. This results in
first order in time evolution equations.

In Sec. III we discuss the inverse scattering problem
and the simplifications S,=0, T,=0 yield. In Sec. IV
soliton solutions and conserved quantities are found.

fl. EVOLUTION EQUATIONS

The method of isolating solvable evolution equations
requires us to first find equations for 4,, B,, C,, D, in
(1.8). For simplicity in this presentation, we shall take
S,=0, T,=0, and work out one specific example in de-
tail, namely (1.7). When the procedures are understood,
they can be carried out for the more general case, S,
T,+#0. In addition, (1.7) is in a class of first order in
time systems which was not discussed in Ref. 13 where-
as the more general case was considered for second
order in time systems.

The A,, ..., D, equations are obtained by setting
(8/3tNEV,) =E(Vsi,,), 1=1,2, where E is the shift oper-
ator, and requiring the eigenvalue z to be time invari-
ant, 3z/9/=0., We find

z8,A,+R B, -0,C,=0, (2.1a)
1/2B, = 2B, +Q,(A, = D)) =Qpys (2. 1p)
2Cpy ~1/2C,~ R (A, -~ Do) =R, (2.1c)
1/28,D,+Q,Cpu - R,B,=0, (2.1d)

where A,4,=4 4~ A4,, etc. We now wish to solve the
system (2.1). In general the nonlinear evolution equa-
tion is the integrability condition necessary for 2.1

to have a solution. However, corresponding to each evo-
lution equation is a set of 4,, ..., D,. The question, then,
is how do we go about isolating a particular evolution
equation. This is where the dispersion relation of the
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associated linearized problem is useful.” In Sec. III we
show that, in the case where @,, R,—~0 (and also S,, T,
in the more general case) as |n] —=, then lim,..(4,

- D,)=~iw(z?). In the case of the nonlinear Schrdodinger
equation (1.%7), its linearized version (1.2) has the dis-
persion relation w(z%) =2z% +1/2z% - 2. This suggests using
the following finite expansions in z for A,,...,D,:

A,=A,®22+A,", B,=B,Yz+B,"/z,
C"=C"(1)Z +C"('1)/Z, Dnan(O) +Dn(-2)/22.

The reader should note that the parity of the functions
A, ...,D, are consistent with Egs. (2.1). Substituting
these expansions into (2. 1) and equating powers of z
yields a system of twelve equations in eight unknowns
A,%,...,D,®)). We have found it easiest to solve for
the coefficients of the highest and lowest powers of z
first.

The coefficient of 2% in (2, 1a) yields 4,4,¢2 =0,
whereas the coefficient of 2 in (2. 1d) yields 4,D,¢?
=0, The solutions are 4,%'=A_® = const and D,*?
=D_“¥ =const. Continuing to 2%, we find B,*’=¢Q,A_?
from (2.1b), C,V’=R,,A_® from (2.1c); for 22 we
have B,'=¢,,D_* from (2.1b), and C,**’=R,D_®
from (2. 1c). At z (2. 1a) yields

AnAn(O) = (Qan-l - RnQn*l)A-(Z) = An(_ Rn-lQnA-(z))

and (2. 1d) is identically satisfied. Similarly, the coeffi-
cient of z! in (2. 1a) is identically satisfied while from
(2.1d) we have

AnDn(O) = (RnQn-l - Qanl)Dn(_Z) = An (_ Qn-anD-(-a))'
Solving the above equations for A4, and D', we find

An(O):‘Rn-lQnA-(a) _+_A_(0)’
(2.2)
D"(O) — Qn-anD-(-Z) +D_(0),

where A_" and D_‘© are constants. The two remaining
equations (coefficients of z%) are evolution equations.
(2.1b), (2.1c) require @,, R, to satisfy,

R, =(1-RQ)R,uD.“¥~R, ;A ®) =R (A V-D "),
(2. 32)
Qnt - (1 - RnQn)(anA-(a) _ Qn_lD_(-z)) + Q"(A_‘O’ - D_(O)).
(2. 3b)

Thus, we have solved (2. 1) using the expansions

A,, ..., D, as suggested by w(z?). The twelve equations
determine the eight unknowns 4,®, ..., D,?), and leave
four integrability conditions. Two are trivially satisfied,
and the other two are the evolution equations (2. 3); the
solutions for A,, ..., D, are summarized below:

A, =4 D( - R,1Q,) +A,

Bn :A-(Z)an + D-(-Z)Qn-I%:

C,,:A_(Z)R"_IZ +D_(-2)Rn_§_,

(2.4)

1
Dn:D_(O) +D_('2)< ?_ Qn-an) .
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The nonlinear Schridinger equation is obtained by
taking A ¥ =D_“#*=_4, A_©=p_ "™ =4, and requiring
R,=7FQ,*. Then the coupled system (2. 3a,b) are mu-
tually consistent, and we have

iQnt = le + Qn-l = an + QnQn* (Qnd + Qn-l) . (2- 5)

We also point out that the dispersion relation w(2?) sat-
isfies the following relationship with A , D, :
lim{4,-D,) ==i(z%®+1/2% = 2) = - iw(2?%,

o
subject to lim,,..®Q,=0.

A second interesting evolution equation can be im-
mediately obtained from the previous results. It is re-
lated to the modified Korteweg—de Vries (MKdV) equa-
tion, and its dispersion relation is given by w(z?) =i(z?
—1/z%). Taking A.¥=p_-2)=1,

A ©=p®=0and R,=%@q,, (2.3) yields

Q"t = (1 + QE) (Qm-l - Qn-],)- (2., 6)

The reader again can see that lim,. .(4, - D,) = - iw(z)?
is satisfied. The continuum limit of (2., 6) is related to
MKdAV by setting Q,= 8x@, and expanding @, =Q + AxQ,

+(8x%/2)Q,, + (8x%/6) @, ++++. We find,

Q. =(1:8x2Q)[24xQ_ + (Ax*/6) Qe + -+ |. 2.7
@ has an asymptotic solution of the form Q_)~f(y, 1),
where y =x +2Axt, T=(ax3/3)¢; f(y, T) satisfies

Fr =Fyyyt 6%, (2.8)

An even more closely related equation is obtained by
expanding A, in powers of z%, z%, z'. Corresponding to
the linear dispersion relation w(z?) =2z*/2-22+1/22

- 1/(22%), we find,

Q"t = (1 + Qﬁ)[Qn-l - Qn+1 +%Qn+2(1 + Qﬁd) - %Qn_z(l + Qﬁ-l)
+3Q,(Q% - Q24)]. (2.9

If we scale @,= Ax@,, then @~ Axf(x, T), where T
=ax% and (2.9) is directly reducable to MKdV.

Another first order in time equation we have found is
related to the sine—Gordon equation in characteristic
coordinates, U, =sinU. Its dispersion relation is given
by w(z?) = 2i0/(2% - 1/2%). The corresponding evolution
equation is given by

20Q, + @nut, (1= QD) = @, (1+Q2) - @,.1(Q2),

5 (@)
-[Qm+@)+Qu1-Q)1 2 3t

n=1 2
= an Z [Qk (Qk+1 %’5 + Q}ult + Qk-l;] . (2- 10)

Bzmx
It should be noted that the expansion procedure is car-
ried out by first scaling A,,...,D, by 4,=4, /(2%
~1/2%,...,D,=D,/(z* - 1/2%). The continuum limit re-
quires us to take 0=Ax, @,=Ax§,. Then (2. 10) yields

Q-Q,.-4Q [2QQ,dx' ~o. (2.11)

(This is basically what is found in the continuous case.?)
Letting @ =3 U, shows that (2.11) is reducible to U,;
=sinlU under the condition U(~«) =0 (mod 27).
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In addition to the above equations are both (i) second
order in time equations and (ii) a class of equations re-
lated to a discretized Schrodinger equation. In Ref. 13
we have shown that by using the eigenvalue problem
(1.5), in conjunction with (1.6), a set of equations for
A,, B, C,, D,[which reduce to (2.1) when S,=T,=0]
is obtained. Expanding 4, as 4,=A4,Yz+A4,© etc. yields
the self-dual network,

I"‘t = (1 ilﬁ)(i;n-l - f}n):
(2.12)

V"t = (1 * Vnz)(ln - Iml))

where R,=FQ,=1, T,, =%§,=V, are the relations for
the potentials in (1.5). The dispersion relation of (2.12)
is obtained by lookmg for special solutions I, =2z%"

X exp(— iwt), V,=2""exp(—iwt) in the linearized form of
(2.12). We find w==4(z = 1/2). This function naturally
suggests the correct expansions for 4,,...,D, used in
Ref. 13.

If we choose the potentials to satisfy R,=0, T,=1,
Q.,=-B, S,=1-a,, then the eigenvalue problem (1.5)
is reducible to a discretized Schrodinger equation,

Ve s Vo +B,,Vzn =AVq, (2.13)
where A=z +1/z, The same expansion in powers of z
that gives (2.12) now yields the Toda lattice equation,

Quy, =exp[= (@, = @, 1) ] = expl- (@, - Q,)],  (2.14)
where @,= Qnt, S,=1- exp[—(émx - é,,)]. The reader can
verify that the dispersion relation of the linearized
form of (2.14) also is w=+i(z — 1/z) as in the self-dual
network. The difference is that the choice of potentials,
hence the eigenvalue problem, is different. Similarly,
if we expand in powers of z beginning at 2% with the choice
of potentials R,=0, @,=0, T,=1, S,=1-exp(-u,) we
find the evolution equation

Uy, = exp(- Uy q) = €XP(= Up.1). (2.15)
(2.15) has a linearized dispersion relation given by
w=1£(z%=1/2%). (2.15) has also been discussed by
Manakov'? and Kac and van Moerbeke.* It can be verified
that if we let u ~Ax?f(x, T), where x=x + 2Axf, T=35ax%,
then in the continuum limit (2. 15) is the KdV equation

Sr =Fxxx = 6ffx.- (2.16)

Thus (2. 15) is analogous to (2. 6), and it is intimately
related to the discrete Schridinger eigenvalue problem
(2.13). In a similar sense there is an equation, analo-
gous to (2.9), corresponding to the higher order disper-
sion relation w =2%/2 — 22 +1/2% -~ 1/(2z*) which reduces
directly to KdV. Expansion of A,, etc., to powers of
z%, etc., and choosing the arbitrary constants appro-
priately yields

=3[exp(tt,,1) = exp(=1,4) ] +5 exp(= 1)

X [exp(— Up) + eXp(=t,,5) | +3 exp(-u,)
X [exp(=1,4) — eXp(—t,q) ] = 5 exp(—2,.1)
[

x exp(_ n+1) +exp("' n+2)] (2. 17)
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which reduces to (2.16) if we take u ~ax%f(x, T), T=ax%

in the continuum limit.

Finally, we point out that the evolution equations
(2.14), (2.15), and (2.17) can be deduced directly from
the discrete Schridinger equation (2, 13). They are found
by using (2. 13) in conjunction with an assumed time de-
pendence of the form V, =A,V,; + B,V, and expanding
in powers of A, In Ref. 13 this procedure is discussed
and (2. 14) is deduced. If we take 8,=0 in (2.13), this
procedure yields (2. 15) when we terminate at X (i. e.,
A,=A,Pr+A, " etc.), and (2.17) when we terminate
at 2%, In any event the method of solution for these equa-
tions differ from (2.5), (2.6), (2.9), and (2.12) as the
inverse scattering is different for the different eigen-
value problems.

Il. METHOD OF SOLUTION

In this section we shall discuss the inverse scattering
of the eigenvalue problem (1.5) in the case where @,
R,, S,, T,~0as Inl—~, Hence, this method is not ap-
phcable to the evolution equations (2.14), (2.15), and
(2.17) for which the discrete Schrodmger equation ap-
plies. However, the methods of Case and Kac!® and
Case!! are applicable in these cases. We also wish to
note that the inverse scattering of (1.5) was considered
by Ablowitz and Ladik.? However, the special case
when S, =T, =0 [corresponding to Egs. (2.5), (2.6),
(2.9) and (2.10)] allows certain important modifications
which were not previously presented. It is via the the-
ory of inverse scattering that the solutions to the non-
linear evolution equations can be found. The basic steps
for carrying out the solution process have been dis-
cussed in Sec. I. Here we will elaborate on these steps
as they apply to the eigenvalue problem (1.5) and time
dependence (1. 6).

For convenience it will be assumed that the potentials
are on compact support; thatis, @, R,, S,, T, vanish
for Ini = N;. Let us define the time independent eigen-
functions ¢,, ¢, n ¥, of (1.5) as

1 n o~ 0 -n
(5)e &~( )
e (e 2

The scattering coefficients a, 4, b, D associated with
the eigenvalue problem are defined by the relations

n==2°:0¢,
(3.1)

o, =a(z, t)@n +b(z, 1),
3 _ (3.2
¢, ==1alz, )Y, +b(z, )Y,

It is assumed that a(z) (we will not write the ¢ dependence
explicitly in what follows) and a(z) have a finite number
of simple zeros inside and outside the unit circle, re-
spectively. The zeros of Zz, denoted by z,, and the zeros
of a, denoted by z,, turn out to be the discrete eigen-
values of (1.5). The remaining elements of the scatter-
ing data are as follows: the “reflection coefficients”

are given by the ratios b/a and 5/a, and the bound state
normalization constants are

fda(z) = (= fa(z)
c, = (b(z/ > , C :(b(z/ . (3.3)
) Az ) ey " dz | -,
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In the important special cases of R,=FQ}¥, S,=FT%
the barred and unbarred quantites are related by

b=1xb*,
==+ (1/2#3)Cy.

The first step in obtaining the solution is to obtain the
scattering data at =0, We are given @,, R,, S,, T, at
t=0; hence we must solve the eigenvalue problem at
t=0 for ¢,, ¥,, ¢, ®, With the potentials on compact
support this is accomplished most readily by putting
(1.5) into the two explicit forms

2y =1/2F,
amar, (3.4)

Vl’l+1 = [(Z +Rnsn) Vl'l + (Qn + Sn/z)VZn]/(l - SnTn)’

(3.5)
Vaou =T, +R)Vy +(T,Q,+1/2)V, |/(1=8,T,),
and

=[(1/2+T,Q)V_, - (S./2+Q)V, ,,1/(1~R,Q,),
(3.6)

Ve, =l- T, +R)Vy , + (& +RS)V,  1/(1-R,Q),
and iterating from n=~ Nj; and n=N,, respectively.
Once this has been done, Egs. (3.2) can be used to de-
termine Z,, 0,/a, [i.e., b(z,0)/a(z, 0)], and C, , in
terms of the initial data Q.(0), T,(0).

At this point it is important to note that there is a
degree of degeneracy in determining the scattering data
corresponding to the special case of §,=7,=0. Assum-
ing R, and @, are on compact support, an induction ar-
gument based on iterating (3.5) and (3. 6) shows that
a(z), a(z) are polynomials in z of even degree. Similarly
it is found that 5(2), b(2) are polynomials of odd degree;
hence a is an even function and b is an odd function. The
parity of @ and b implies that eigenvalues of (1.5), if
they exist, occur in positive—negative pairs and

ék(E,): ck(z-:—Z»), Ck(z+) :ck(z-)

At this stage the initial conditions have been mapped
into the scattering data at £=0. Next the time evolution
of the scattering data must be found. The remarkable fea-
ture of this method, similar to that of Fourier analysis,
is the separation of the spatial variable from the time
variable. This allows the computation of the time evolu-
tion of the scattering data from (1 6) using the asymp-
totic forms of A,, D,. Since ¢, ¢>, P, w have time inde-
pendent boundary conditions (3.1), they do not satisfy
(1.6). We therefore define elgenfunctlons »®, ¢,

4, ) which satisfy both (1.5) and (1.6). From (2.1)
as Inl -», B C,—~0, and A,, D,~constants. Then, in
order to satisfy both (1.5) and (1.6), we define these
new eigenfunctions by

0,0 =¢,exp [<limA,,)t] ,
¢, =¢,exp <limD")t],

ne e

6, =4, exp (hmD,,)t] ,

Z_IJ,.“ ! =-Zl_),, exp <limA") t] .
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Since these functions are linearly independent, we may
write

d)n(t = a[)_d_)n(‘) + b()d)n(t )’

(3.8)
an(t ) — ;Own(f ) +-b_01_pn(t ),
Susbstitution of (3.7) into (3.8) and comparison with
(3. 2) yields

- - b b
a=ayexp[(D, - D)t], ===Lexp[(4, - D.)t] (3.9
0
and by analytic continuation
C, =C, gexp((A, - D,)t], (3.10)

where in the above A4, =lim,..4,, etc. [For example,
(2.4) gives (A, - D,)=-i(22+1/2%-2).]

At this point in the solution process, all the neces-
sary data needed to reconstruct the potentials have been
found., As in the case of Fourier analysis, we need to go
from “scattering space” to physical space, i.e., we wish
to reconstruct U(x, t), The theory of inverse scattering
tells us how this is accomplished. In Ref. 13 the details
are worked out. Here we will present the results and
add some simplifications when S,=7,=0.

From Ref. 13, when S,=%T%, R,=7% @* the inversion
is begun by computing

1 [b
F(m +n; t):ﬁfi(z’t

The integral and summation terms correspond to the
contributions of the continuous and discrete spectra,
respectively, of the eigenvalue problem (1.5). F(m +n;f)
bears a strong resemblance to Eq. (1.3a) of the linear
theory, the difference being the discrete term (which
gives rise to the important soliton solutions). Next we
solve the coupled summation equation

— m+n-1

m+n-1 dZ - Z C
(3.11)

2 Kfn,n";DF(m+n’;t)=0,
n*=n+l
(3.12)

Ki(n,m;t) = F(m +n; t) =

Ky(n, m;t)+ 20 K¥(n, n': ) F(m +n; ) = 0.

n=n+l

The solutions allow us to reconstruct the potentials by

Q. (==K (n,n+1;1), (3.13a)
and if 7, +0,
7,(0) !

B EPROLE0))

X[Kf(n, n+2;8) = K¥(n, n+1; DKsn, n+1;8) 1.
(3.13p)

In the case when S, =T, =0 there are significant sim-
plifications. As discussed earlier, it can be shown that
(8,/a))(2) is an odd function of z, (4, ~D,) is even in z,
the eigenvalues occur in positive—negative pairs, and
for each such pair there is one Ek,o of the same sign.
These symmetry properties mean that (3.11) may be
written in the form (p = 1)
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2Fp(n+my;t) m=n+2p-1
Fn+m;t)= 0 m—n+2p }, (3.14)

Qll o

where
1 N2 _
Fp(n+m; t):'z_ﬁ (2, 0z™™V dz =y, Co(Hz™n,
Bl
cr (3.15)

and {ﬁcR denotes the integral along the right portion of
the unit circle only. This means that Eq. (3.12) also
separates. We find (p= 1)

Ky (n,m;t) m=n+2p-1
K (n, m;t)= 0 men+2p (3.16a)
and
Koo, m;t) m=n+2p
Ky(n, m;t) = 0 men+2p-1° (3.16b)

Thus, Eq. (3.13) is identically satisfied (as it must),
and an alternative form for (3.12) and (3. 13a) is

KIR(n, m;t) = 2Fg(n+m; ¢)

+475 DKy (n, n"; OFg(' +n", ) Fp(n' +m; 1) =0,
n? n*
(3.17

' =n+2,n+4,...,9;n"=n+1,n+3,...,°), where
Q,(t) is recovered from the relation

Rty ==K (n,n+1;1). (3.18)

The continuum limit to the partial differential case is
now direct.

Finally we point out how A, — D, is related to the dis-
persion relation, It is clear from (3.17) and (3. 18) that
for sufficiently large n—=

Q) ~=2F:(2n+1;1). (3.19)

Thus in these regions the solution approximately satis-
fies the linearized equation. Thus by using (1. 3)—(1.4)
and (3.9)—(3.11), the time dependence in Fg(2n +1;¢)
must obey the condition

—iw(z®) =lim(4,-D,)=(A,-D,).

nw

(3.20)

To summarize, we have found the following:

(i) Given the initial data [Q,(0), etc. ] we solve the di-
rect scattering problem (1.5) for the initial scattering
data,

S(z,0):{zy, ..., 2y, blz, 0/alz, 0), Cy }-
(ii) We find from (1. 6) the scattering data for all time,
S(Z, t): {El’ .o

(iii) Given S(z, ), we solve a linear summation equa-
tion [either (3.12) or (3.17)] and recover the potentials
[via (3.13) or (3. 18) depending on whether or not T,
=%5* is zero] from this solution. The dispersion rela-
tion is a crucial conceptual quantity in this theory. First
of all, it suggests how to isolate and characterize a
given evolution equation, and second it is the distinguish-
ing function in the time dependence of the scattering

vy Zns (Bo/ay) exp(=iwt), Cp qexp(-iwd)}.
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data S(z, t). For the above reasons we consider this pro-
cedure a natural extension of discrete Fourier analysis
to nonlinear differential—difference equations. We term
the inverse process as “the inverse scattering trans-
form.”

IV. SOLITONS AND CONSERVATION LAWS

In this section we will present important special solu-
tions of the evolution equations. These solutions are
termed solitons, !® because the nonlinear interactions
are elastic. We shall see that the existence of soliton
modes is due entirely to the discrete spectrum, In this
section the discussion of these solutions will be restrict-
ed to the evolution equations obtained by letting R, = - @*
S,==T}.

The first case to be considered is the first order in
time equations corresponding to S,=7T,=0. As was men-
tioned in Sec. III when S, and T, both vanish the eigen-
values, if they exist, occur in positive—negative pairs.
In this case a pair of eigenvalues gives rise to a single
soliton. For this situation Fg(n +m;?) in (3. 15) is given
by

Frn+m;t)=- EIEI"”"'I, (4.1)
The solution to (3.17) can be found by making use of the
contraction

Izl(n) ZZKIR(n, m)zx™, (m=n+1,n+3,...,o).
(4.2)
By following the technique of Ref. 13, Izl(n) is given by

- 2C,z, " &, 7)™

K0 = e TR Gz P - G P = G )
4.3)
and Kj,(n, m) is found to be
~ = mn-1
Kl TG g Y
m=n+2p~-1.

From (3. 18) the general soliton solution for Z,
=exp(—w+ie) (w>0), C,=C, ¢exp[-iw(z?¢] in terms
of the dispersion relation is given by

C 1/2

Q, :<%g> exp(- (i/Z){w(Elz) +[w(Z 2 ¥} + 2in86)
f0

x sinh2w sech(@nw - (i/ D[w(e) I - 0@}t +69),  (4.5)

where ¢,=- m(|61,o|/SinhZW). For the case of the non-

linear Schrédinger equation (2.5) (@,=— R} using the
dispersion relation w(z?) =z%+1/2% -2 in (4.5) yields

@, = expli(2n6 — 2cosh2w cos28f + 2t + 6]

X sinh2w sech(2nw + 2 sin26 sinh2wt + ¢ ;) (4.6)

where 0, is defined by 51 )= 161,01 explify).

The second case is the second order in time systems
corresponding to keeping all four potentials. Unlike the
preceeding first order equations where a pair of eigen-
value gives rise to one soliton, here one eigenvalue
gives rise to one soliton. For this solution mode
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F(n+m;t) is given by

F(p+m;t)==Cyzy™". 4.7
For this case, in order to determine the solutions, the
solution to (3.12) must be found. By quoting the results
of Ref. 13, Kj(n, m;t) and K,(n, m; f) are given by

- Czpmt (4.8)
K1(n m, t 1 +Clc (-—121 )2n+1/(1 212 *
and
. —Clc*r121 zl Zl
Ky(n, m; 1) = TA+C.Craar) ™ /(- 2,20 (1 — 2,28)
(4.9)

Using the appropriate values of K;(n, m; ) and K,(n, m; t)
in (3. 13), the general soliton solution for z; = exp(— w
+46) (w>0), C,=C; jexp[-iw(@})?] is given in terms of
the dispersion relation by

C, ,\? ) , - '

Q.= ——sQC* exp(- (i/2{w(@}) +[w(@}) ¥}t +i2n0)
0

- w@HH+0,),

(4.10)

X sinhw sech(2nw — (i/20[w @} I*

T = 1<Eiko>1/2 ( (/2){ (_.z) [ (—2)]*}t (2 +1)6)
n—~ ?1_.; exp(— (2 w(Z) - [w(z? —i(2n

X sinhw sech(2nw — (/2)([w@H ¥ -~ w@H)E+ ¢y +w),

where ¢, =—In(IC 41/(2 sinhw)). In the case of the self-
dual network, *® the dispersion relation is given by

w(z¥) =+i(z —1/2), and the results of (4.10) can be sim-
plified to yield

Q,=sgn(C, ) sinhw sech(2nw + 2 sinhwt + ¢ ),
(4.11)
T,=%sgn(C, ) sinhw sech(2nw + 2 sinhwt + ¢+ w).

Connected with the class of solvable evolution equa-
tions derived in Sec. II is an infinite sequence of conser-
vation laws. Following Zahharov and Shabat, & these
laws can be constructed systematically from the scatter-
ing problem by considering asymptotic expansions of
a(z). The details of the derivation of the conserved quan-
tities will be enumerated for the case of S,=7,=0. The
same procedure can be followed when S,#0, T,#0;
hence we will only list the first few conservation laws.

The asymptotic form of @(z) as n— can be obtained
by solving equation (3. 2) for a(z) and applying the bound-
ary conditions (3.1); thus

a(z) ~— fﬁgnz" (4.12)
From the eigenvalue problem (1.5) we eliminate ‘Eln

and obtain a difference equation for the expression
¢,2", which is given by

néz(—‘z;&)ﬂ? (2", (4.13)
By defining
"1’23 _k}-[.egk’ (4.14)
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Eq. (4.13) takes the form

(4.15)

R
gnﬂ,(gywz_ 1) - zz ;21 ml = 1) =22RnolQn'

An asymptotic expansion for g, in powers of 22 is ob-
tained by substituting the expression
gn:gn(0)+gna)zz+gn(2)z4+'" (4- 16)

into (4. 15) and solving for the coefficients in a recur-
sive manner. Thus g, is given by

8, =1+2%R,4Q, ,+7*R 10, (1 =R, ,Q, ) ++--.

(4.17)
Taking the logarithm of (4.14), we obtain
logla(z) | =2 1log(l +2%R, 4@, ..
+ 2R 1@na(1= Ryg@ud) + 0+ ), (4.18)

which can be expressed as

og[a(2)] =22 {¢%R, 1 @.o

+24R n1@ng(1 =R, 5Q,.0) = sz-lQn-Z] '}5
(4.19)
since @(z) is time independent, each of the coefficients

C; in the asymptotic expansion

logla(z)]=2. C;2% (4.20)
i=0
is constant. The {C,}, i=1,2,+°+, are our infinite num-

ber of conserved quantities. The first two are found to
be

C = E R, @4,

pzaw

(4.21a)

©

Cy= Z' [Rka-z(l - Rk-le-l)

Rzmoo

-2RiQE4 (4. 21b)
In the general case when S,#0, T,#0, a similar pro-

cedure applies. However, here it is the quantity
a(z)I>.(1 - S, T,) that is constant. We list the first two:

Ci= 2 (Se1Re + Tu @), (4,22a)
e

Co= 2 [SeaTh * Ru@Qu s (1= Sy Tioy)
Rza
- %(sk-le + Tka)a]- (4. 22b)

In addition to these there is an additional conserved
quantity to the above. This is

1- Rka)
Co=1 - (1 S. T,
which is found from the Wronskian (see Ref. 13). This
quantity is always positive when @, =- R¥, T,=-Si.

This is a nice feature to maintain in any (numerical)
difference scheme,'®
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Let A be a closed linear transformation from a complex Hilbert space § into itself, with D(A4), the
domain of the operator, dense in . Suppose that A satisfies {A$,AP)>> a*(d,d> for all ¢ ¢ D(4),
where a is a positive constant. Then for the case where the equation A¢ = f, with f ¢ P given, possesses a
solution ¢ ¢ D(A), bivariational functionals are presented which yield upper and lower bounds for both
the real and imaginary parts of {g,$)> for any given g ¢ . The case A4 = (1+ zK) with z a complex
parameter is then considered. With appropriate choices for the trial functions involved, the functionals
yield the [N+ J—1/N—J] Padé approximants (J =0, 1,--,N; N = 1,2,...) to F(z) ={g,$>

together with correction terms such that bounds on F(z) ensue. Finally, an arbitrary analytic function
G(z), regular within a closed contour C and continuous within and on C, is considered. The above theory
leads to bounds on G(z) in the form of [N+ J—1/N— J] Padé approximants together with correction
terms. The results are then generalized for arbitrary [L/M] Padé approximants to G(z) with the aid of the

Hermite error formula.

{ INTRODUCTION

One of the major problems in approximation theory
in general, and in Padé approximation theory in partic-
ular, is the assessment of the accuracy of the ap-
proximation. Generally speaking, for a well-constructed
approximation, additional information is required beyond
that used to construct the approximant. For example,
if it is known that an analytic function belongs to a par-
ticular class, such as series of Stieltjes, then inclusion
regions can be constructed directly from the Padé ap-
proximants for the value of the function. If in addition
the radius of convergence of the series is known, the
inclusion regions can be tightened. In this paper we
consider approximations to the solutions of functional
equations and approximations to analytic functions. We
will show how certain additional quantitative information,
which may well be available in some practical situa-
tions, can be used to construct inclusion regions from
our approximants. Since the true value lies in the in-
tersection of all such inclusion regions, and since our
inclusion regions do not seem to possess a nesting
property, it turns out to be useful to compute all of the
inclusion regions. We will first treat the functional
equation and later as an application, as well as by an
independent method, treat analytic functions.

Let $be a complex Hilbert space with inner product
(, ). Let A be a closed linear transformation from $
into itself, with domain D(A) dense in §, and suppose
that it is possible to find a positive constant a such that

(A Ad) = a*@ ,d) for all & € D(A). 1.1)
Let fe  be given such that the problem
Ap=f (1.2)

possesses a solution ¢ € D(A4). Then we begin in Sec.
II by showing how bivariational upper and lower bounds
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can be imposed on both the real and imaginary parts
of the quantity

(g,¢) for any given g=§. (1.3)

In previous work!~® similar bivariational bounds have
been established for the case where the Hilbert space
is real. These bounds have lent themselves to a variety
of applications including the determination of pointwise
bounds for the solutions of two-point boundary-value
problems* and one-electron Schrodinger equations.®
Of special interest, for the situation where the operator
A in (1.2) is positive and self-adjoint, it has been
shown® how bivariational functionals lead to Padé ap-
proximants plus corvection terms such that bounds are
obtained for functions of the form

F(x):f‘” do(u) x>0,

1+ux’ (1.4)
where &(u) is of bounded variation on 0 <% < » and lE‘(x)
is a generalization of a series of Stieltjes.

In Sec. III we consider the application of the bivaria-
tional bounds, developed in Sec. II, to the case A=(1
+zK), where z is a complex variable and the domain
of the linear operator K is the whole of §. With ap-
propriate choices for the trial functions involved, the
bivariational functionals are shown to yield the [N+ J
-1/N -J] Padé approximants (J=0,1, .. .,N:N=1,2,
...)to

F(2)= (g, (1+ zK)'f) (1.5)

together with correction terms such that bounds on the
real and imaginary parts of F(z) ensue. These cor-
rection terms involve similar information to that re-
quired for the construction of the Padé approximants,
and they can often be evaluated explicitly. An under-
standing of the structure and formation of such cor-
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rection terms is important because Padé approximants
are now often used to approximate physical functions of
the form (1.5) (see, for example, the applications given
in Refs. 7 and 8 and also Refs. 9 and 10). With the aid
of correction terms each Padé approximant leads to
rigorous information about F(z). Bounds associated

with one approximant can supply useful information about
F(z) where another approximant with different pole loca-
tions leads to wide bounds, and vice versa. By forming
a variety of different Padé approximants plus correction
terms one should be able to obtain good bounds on F(z)
throughout various regions in the complex plane,

Finally, in Sec. IV we consider an arbitrary analytic
function G(z) which is regular within a closed contour
C, and continuous within and on C. The above theory
leads to bounds on G(z) in the form of [N+dJ - 1/N -J]
Padé approximants together with correction terms. The
results are then generalized for arbitrary [L/M] Padé
approximants with the aid of the Hermite error formula.
Given an appropriate set of information about G(z),

a “Padé Table” of upper and lower bounds on G(z) can be
constructed straightforwardly. Seen as a whole, this
table supplies useful information about G(z) for all z
lying within C.

Il. BIVARIATIONAL BOUNDS IN A COMPLEX
HILBERT SPACE

We will suppose in all that follows that A is a closed
linear transformation from a complex Hilbert space ©
into itself, with D(A) dense in . We will suppose that
A has the property (1.1), and that fc § has been given
such that (1.2) possesses a solution ¢ € D(A). We note
that (1.1) ensures that ¢ is unique.

Since D{A) is dense in §, A uniquely defines its ad-
joint A*,! and we have

(¢, An) ={A*&,n) for all ne D(A), E< D(A*). (2.1)

A* is also a closed linear transformation from $ into
itself, and D(4*) is dense in$. Since A is closed we
have!?

(Axy=A. (2.2)

Now let g< Hbe given. Then in order to derive
bivariational bounds for (g, ¢y we must introduce the
auxiliary equation

A*ZP =g

for which we have the following lemma:

(2.3)

Lemma: The equation A*y= g has at least one solution
Y for any g€ 9.

Pyoof. A*A is a positive self-adjoint operator in'!§,
and from (1.1) it follows that it is bounded below away
from zero over its domain. Its inverse is thus a self-
adjoint, bounded and therefore closed operator. As
such its domain is necessarily the whole of $. Hence,
the range of A*A is the whole of $. Hence, the range of
A* is the whole of §, which proves the lemma,.

In all that follows we shall use y to denote a solution
of (2.3). In order to handle bounds on the real and
imaginary parts of complex quantities succintly, we
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introduce the notation

2, z,, or equivalently -z, < — z,, (2.4)
whenever z, and z, are complex numbers such that

Rez, > Rez, and Img, > Imz,. (2.5)
The following statements are immediate:
if 2,22, and c20, = cz, % czy; (2.6a)
if 2,22, =-2,2-2; (2. 6b)
if 2,22, and 2,22, =z, +2, > 2,+ 2, (2.6¢)
for all complex z, (1+4)|z] 22z%-(1+4)|z|, (2.6d)

where |zl ={zz}*/?, with z the complex conjugate of z.

We will write |7l ={n, n)!/? to denote the usual Hilbert
space norm of any vector n€@. The central result of
this paper can now be given.

Theorem. Bivariational upper and lower bounds on
the real and imaginary parts of (g, ¢) for any gc$are
supplied by the two functionals

J.¥,8)=~(¥,Ad) + (¥, /) +(g,®)
+(1+da?|A® - f A¥ g

(2.7
according to
9.9,8)>(g,2) > J.(¥,8) 2.8)

for all ¥ € D(A*) and ® € D(A). The bounds are attained
whenever either ¥ =y of (2.3) or & = ¢ of (1.2).

Pyoof. 1t follows from the lemma that we can always
write

V=y+6¥, (2.9)

with 6% = (¥ ~ )< D(A*), Similarly, from the assump-
tion that (1.2) possesses a solution ¢ € D(A), we can
write

P=0¢+060, (2.10)
with 6& € D(A). Hence
J¥,@)=(g, $) - (0¥, AsP)
t(1+d)at|As || - | Ax6¥ |, (2.11)

which establishes the bivariational nature of the two
functionals since there are no first-order terms. To
establish the bounding properties of the functionals we
observe that

(1 +dat|As® || - || A*6¥ | = (1+4)|| 6@
[using (1.1)]
% (1+4)|(A*6¥,68)| (using Schwarz’s inequality)
=(1+4)|(6¥,A6®) | [using (2.2)]

. || A*ow ||

°

> (6¥,A68) [using (2.6d)], (2.12)
and similarly
(6% ,A88) & ~(1+i)at||As@ | « | A*o¥ | . (2.13)

On combining the observation (2.11) with the inequali-
ties (2.12) and (2.13), the relation (2.8) is obtained.
The last statement of the theorem is immediate from
(2.11) with 6& =0 or ¥ =0. This completes the proof
of the theorem.
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Let us write

S¥,8)=9¥,8)=((¥,2), (2.14)
where

J¥,8)=-(¥,Ad) + (T, /) +(g,®) (2.15)
and

C¥,@)=Q1+ia|| A - £ - | A*¥ - g (2.16)

Then J(¥,8)=(g, d) — (6¥,A6®) is itself a stationary
approximation to the quantity of interest (g, ¢). This
functional occurs in bivariational bounds associated with
real Hilbert space,!s? and also arises as the basis of
approximate methods in theoretical physics and chemis-
try (see, for example, Refs. 12 and 13). The purely
second-order functional C(¥,&) supplies corrections to
J(¥,@), such that bounds for (g, ¢) ensue.

We consider briefly some methods for choosing “best”
trial functions ¥ € 7, and &< 7, from families of trial
functions 7, C D(A*) and 7,C D(A). Ideally one would
choose two different pairs of trial functions to maxi-
mize the real and imaginary parts of ﬂ_(d: ,¥), and one
would similarly have to minimize the real and imaginary
parts of ﬂ‘(‘b,\ll). However, this optimization procedure
is difficult even in the case of linearly variable trial
functions. An alternative method is to choose ¥ and
80 as to minimize ||A*¥ ~f||, ¥e 7, and ||4A® - f||, &
€ 7,, respectively, for then 19 ,(¥,8) -9 (¥,8)| is as
small as possiﬂble. We note that one can sensibly
choose ¥ and & independently because of the last state-
ment in the theorem. Another possibility is to choose
¥ and & so as to make g(‘lf &) stationary with respect
to variations in ¥ 7, and ® 7 In the case of linearly
variable trial functions the latter procedure is attrac-
tive because the algebra is straightforward. Further-
more, by picking the underlying basis functions ap-
propriately one can often arrange things so that ﬂ(‘l‘,@)
is some a priori given approximation to (g, ®), as we
do in Sec. III.

111. PADE APPROXIMANTS AND CORRECTION
TERMS WHEN A = (1 +zK)

Here we suppose

=(1+ zK), (3.1)

where z is a complex parameter and K is a closed linear
transformation from 9 into itself such that

D(K)=9. (3.2)

In order that bivariational bounds shall apply to the
operator A in (3.1), we must have available a positive
constant a such that

(1+2zK)®,(1+zK)8) > a¥X®,d) foralldc . (3.3)

Such a constant, depending on z, can readily be derived
in terms of a positive constant ¢ such that

(K® ,Kd) =(® ,K*K®) < c*®,$) for alldcP. (3.4)

The existence of a finite value for ¢ is assured by the
Hellinger -Toepiltz theorem! since the domain of the
positive self-adjoint operator K*K is the whole of . A
suitable value for ¢® is any upper bound to the
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spectrum of K*K. If we now set z=|z| exp(;6), we have
{1+ 2K)8,(1+ zK)®)
=(2,®) + 2| z| Re(exp(i6X® ,K®)) + | 2| XK& ,K®)
> ((®,8)1/2 ~ | z|(K® ,K®)' /), (3.5)

where we have made use of the Schwarz-type inequality

Re(exp(i6X®,K®))> - (®,8)"/ XK ,Kd)' /%, (3.6)
It follows from (3. 4) and (3.5) that we can choose
a=(1-|z|c) whenever |z|<1/c. (3.7

Alternative expressions for a, with corresponding
ranges of validity, can be derived in terms of upper and
lower bounds for the self-adjoint operator (K*+K).2

Given that there exists a positive constant a such
that (3.3) is true, the condition that X is closed and de-
fined throughout § ensures that the equation

(1 + ZK)¢ :f

possesses a unique solution ¢ for any f€$ (the
proof of this is similar to that of the lemma in Sec. II),
Hence, the theorem of Sec. II supplies bivariational
bounds for the real and imaginary parts of the function

(3.8)

F(2)=(g,#)=(g, (1 + zK)I"f) (3.9)

for any f and g in$. For example, with the value for a
n (3.7) we obtain

J,8) -1+ - |z]e) |1+ 2608 - F |

|| (1+zZK*)¥ - g < F(2)
< J(¥,8)+ 1+ - |z]e)||(1+ 2K - f |
X[ (1+ 264 - g | (3.10)
for all complex z such that |z| <1/c, where now
I, 0)= (T, (1+ 2K)®) + (¥, 1) + (g, (3.11)

and ¥ and & are arbitrary members of .

We now show how bounds of the structure (3.10) can
be made to yield [N+J - 1/N —J] Pade approximants to
F(z)(J=0,1,...,N; N=1,2, .. .) together with cor-
rection terms, Consider the linearly variable trial
functions

J-1
v=2 (- z)f(K*)fg+ E a,(K¥ig (3.12)
j_
and
J -1 N=1
=2 (~2)IK'f+ 2 bK'f, (3.13)
j=0 i=J

where a;, a;,,, . . .,ayyand by, b;,;, . ..,by_, are com-
plex numbers. Choosing the g,’s and b,’s so as to make
}7(\11,<I>) stationary, it is found as in Ref. 6 that the re-
sulting optimal trial vectors can be written
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0 Fy
(K* )Jg (F_z.r + _Z—Fz.ul)

Fopan e F
(Fopa t _z?z.r w2)  (F v+ 2F )

(K*)Jﬂg (F2J+1 + Z_F;J+z) (I_':z.“z + 572;4,3) e (FJ.,V + ;F;,N,!)

(K*)N'Ig (FJ+N-1+Z—FJ+N) (FJ¢N+;FJ+NH)"°

JrN=1

(FZN-Z +ZF2N-1)

(F,; +2F,,, )

and similarly
J=1

d=2 (-2 Kf(-2)
4=0

0 F,,
KIf (F,, + 2F,;.y)

Frina
vt (FJ+N-1 + ZFhN)

KYUf (Fryat 2Fp,) o (Foy,+ 2F,y 1)

X ) H
(Foy + 2Fy;.,) *(Fyya+2F )
(Fyona+t 2Fuy) e (Foy o + 2F,y.))
(3.15)
where
F =(g,K"f), n=0,1,...,2N-1. (3.16)

We note that the first column in the determinant oc-
curring in the numerator of each of the expressions
(3.14) and (3.15) consists of members of §, whereas
the remaining elements are simply complex numbers.
The numbers F, in (3.16) correspond to the coefficients
in the formal power series expansion of F(z) about z2=0,

F2)={g, (1 + 2K)"f) = 25 F.(— 2)". (3.17)

n=0

The stationary approximation to F(z) corresponding
to ¥ and ¢ is found to be
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(F2J+l+ gfzhz) v (FJ*N-1+ Z_F.HN)

(thl + ;quz) (Fz.hz + ;Fz.nz) se (FJVN + ﬁ]v}vu)

(FJ+N-1 + ZFJ+N) (F.HN +2F )0 (FzN-z +2F,y )

, {3.14)

FJ*N-I

Foy (Fop+2F;,) **(Fppy+2F,,,)

. a .
. . .

Frina (Froya+2Fp ) (Foy o+ 2Foy )

(Fog + 2F5;.,) «oo (Friya+2F;,y)

a .

(Frogur ™ 2Fgup) oo (Fopynt+ 2Foy.)

(3.18)

The latter is precisely Nuttall’s compact formula™ for
the [N +J - 1/N —J] Pade approximant to the function
represented by the power series on the right-hand side
of (3.17).

We next evaluate the correction term

(1+ zK*)¥ - g||

CO, &) =(1+i)a||(1+2K)® - f

(3.19)

corresponding to the approximation (3.18). Using
straightforward algebra similar to that used in Ref. 6,
we derive
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K'f

Fz.t et FJ*N-I

K7y Forntee Fruy

KM Fyoycee Fona

(1+ zK)® - f= - (2)¥

and

(K g

(K*)'"g F_z‘nl' * 'F—Juv

(Fz.r + ZFz.rﬂ) e (F.rwq + ZFJW)

°

o

o

(Frog1t 2F o) o0 s (Foy o+ 2F,y )

Fpy o Fripa

(1 + zK*)¥ ~-g=-{(2)*

(F_Z.f + Z—F‘Z.fil)

(Fropat 2F; )

(‘F—J*N-l + Z_F.ruv) tet (FZN-Z + ;an-l)

We note that the denominator of (3.20) is exactly the same as the denominator of the [N+ J ~ 1/N - J] Padé
approximant to F(z) written in the form (3,18), whilst the denominator of (3.21) is its complex conjugate. The
isolation of the z dependence in both of the above expressions is in line with the “accuracy-through-order”

arguments used elsewhere, '

We now have

1+ 208 ~F[| =Ty,

,16

Z‘N/lQN-J(z”:

where @,_;(2) is the polynomial of degree N —J occurring in the denominator of (3.18), and where

“FJ0N-1

eoFJ*N

e

Kf Fy -
K'“lf Fopu®
Fyo= ° °

°

°

5

o

KYf Fy,ye°°Foy,

The latter is simply a positive constant which involves

the numbers

F,={g,K"f), n=2J,2J+1,...,2N-1

already used in the construction of the Padé approxi-
mant, together with the numbers

olym:<K'f1K77>9 l:m:J’J+15 < .. N,

Writing @_;(2) in the form

1023
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(3.20)

(3.21)

(3.22)
KJf F2J “”FJQN-I 1/2
K'f FopuooFroy (3.23)
KNf Fyonooe Foygy
r NaJ
Qus(2)=20 g, (- 2)", (3.26)
ne0
(3.24)  one can show that (3.23) can be rewritten
N N
FN.J:( >z Ohqu_qu_m)l/z, (3.27)
Ind mud
(3.35)  In a similar way we obtain
[ +2650 gl =Sy ;| 2] ¥/ | Qu_s(2)], (3.28)
M.F. Barnsley and G.A. Baker, Jr. 1023



where

Sy = E E K, mdwtdyem)® (3.29)
1= m=J
is a positive constant which involves the numbers
Hiom=(E*)'g, (K¥)"g), L,m=dJ, J+1, 2N (3.30)

in addition to the F,’s.

SuAbStitutingA(fi. 18), (3.22), and (3.28) into (3.10) with
¥ =¥ and ¢ =@, we obtain

(1+)Tw,rSn,s121%¥
1 Qys (2N2A = 12l¢)

(14 )T y,sSn,s | 212¥
1Qy.s ()1 - 1zlc)

valid whenever 1z <1/c.

(N+J~1/N=-J] - < F(z)

<[N+J-1/N=-J]+ (3.31)

Expressions of the form (3. 31) will be of practical
use when bounds are sought for a physical function F(z),
known to be expressible in the form (3. 9): provided that
an appropriate set of F,’s, o, ’s, and u, ,.’s can be
obtained either from experimental measurements, or
direct calculations, bounds on F(z) will follow. This
will certainly be the case where K is a known matrix,
or else an integral operator with compact kernel such
as can arise in a Fredholm integral equation, and the
vectors f and g are known (see, for example, Ref. 17).
We observe the similarity in character between the
numbers o, . and 4, ., and the numbers F, which are
needed for the formation of Pade approx1ma.nts to F(z).
We speculate that in many of the cases where the Pade
method is already used as an approximation technique
there is already enough information available for the
construction of correction terms,

IV. CORRECTION TERMS FOR PADE
APPROXIMANTS TO ANALYTIC FUNCTIONS

Let G(z) be any given analytic function which is
regular within a smooth contour C, and continuous
within and on C. Then Cauchy’s theorem!® tells us

“*“—fcwﬁ
C

(4.1)
2mi (£ -2)

for all points z interior to the contour. We suppose that

the origin z=0 is interior to C, so that G(z) possesses

the Taylor series expansion

=2 G, 4.2)
n=0

with
1wy L [ Gle)ds

In this section we consider the construction of correction
terms for [L/M] Padé approximants to G(z), and their
usage.

We begin by showing that by appropriately choosing
a Hilbert space §, a linear operator X in$, and a pair
of vectors fand g in §, G(z) can be expressed in the
form of F(z) in (3.9). By following the theory of Sec.
III we then obtain bounds on G(z) in the form of [N+J
-1/N —J)] Pade approximants together with correction
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terms. Guided by these results we then show how cor -
rection terms for arbitrary [L/M] Padé approximants
can be deduced directly from the Hermite error
formula.

First, let us rewrite (4.1) as

() dn

_ ¢ Hn
G(Z)-—'g (1 T zn)’

where C is the image of C under the transformation

(4.4)

53-1/"% (4.5)
and where
_=G(-1/n)
Hn) = == 4.6)

Now introduce the Hilbert space of complex-valued
functions on the contour ¢ according to 2="h(n)c  if

%slh(n)|2|dn| <o, 4.7

The inner product between any pair of elements i, c$
and z, €  is defined by

(hyyhoy =P R, hy(n) | an| . (4.8)
&
Define a linear operator K in by
Kh(n)=nh(n) for all hcd. 4.9)

Then K is a closed linear transformation from § into it-
self with domain the whole of §. The adjoint of K is K*
which acts according to

K*h(m)=nh(n) for all he. (4.10)

We note that
&n,Kny =@ | h(n)|? me CKn, hy
‘ (4.11)

so that a suitable value for the constant ¢ occurring in
(3.4) is given by

czzmaxﬂn‘z:neé}:max{l/I§|2: te 6}
=1/min{|¢|%:tc C} =1/,

where d is the shortest distance from the origin to the
contour C. Hence the theory of Sec. III applies with §

and K as defined here. In particular, the bounds (3.31)
apply with

F(z)=(g,(1+ zK)"f) = f

(4.12)

) f(n) ldn|

4,13
1+zn ( )

To obtain bounds on the given analytic function G(z)
we now choose f and g in@such that

gmh(n)=H®) exp[i©n)],

where ©(n) is the angle between the tangent to C at 7
and the x axis. Then we have

Hm) expli0m]idnl £ H(n)dn
Fo)= § -9 5

1+ 27
The values for the constants F, occurring in the
formula (3. 18) for the [N+J~1/N —J] Padé approxi-
mant to G(2) are simply

F,=(-1)G,, n=0,1,

(4.14)

=G(z). (4.15)

.,2N-1 (4.16)
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as can be seen by comparison of (3.17) and (4.2). In
addition to the F.’s we also need to know the numbers
0, mand i,  (,m=J,J+1,. .., N) defined in (3.25) and
(3. 30). These quantities depend explicitly on the indivi-
dual choices for f(n) and g(n) satisfying (4.14), and here
we make the symmetrical choice

fm=gmn), (4.17)
so that
Ulvm:<K1f,Kmf> :fa'ﬁlnm|H(n) o dn‘
:(_ 1y 1G(£)] 1 aE| = Hm, 1 (4.18)

2m o EEmigl
for I,m=dJ, J+1,...,N. Hence the constants ¢,  and
K,,, depend upon the absolute value of the given analytic
function G(z) on the contour C. These constants can be
thought of as certain moments of the function G(z), and
as such they are not so very different from the mo-
ments G, (n=0,1, .. .,2N - 1) required for the con-
struction of the [N+dJ - 1/N - J] Padé approximant to
G(z). They differ from the G,’s in that their values de-
pend strongly on the situation of the contour C, which is
at our disposal in a given problem. We note that since
Oy om = M,y WE have the correction constant

N N
rN,JSN,J =2 2 O mdN-19N-m* (4.19)
1= m=J

For the case where C is a circle of radius R centered
at the origin we have

(=)

+r
0 = exp[i(l — m)8]|G(Re'%) | a6 (4.20)
b 2rRY J:, ” l
for each [ and m; and in this case,
c=1/R, (4.21)

so that bounds will be obtained when |z| < R. If G(2) is
real on the real axis within C, then we see that the [N
+J —1/N - J] Pade approximant together with correc-
tion terms for G(z) may be constructed provided that we
know the numbers G (n=0,1, .. .,2N - 1) together with
the numbers

=11

+r
ﬂk(R):%f (cosk6)|G(Re'®) | a6, k=0,1,...,N-d.

(4.22)

Alternative requisite sets of given information, involv-
ing, for example, moments of | G(Re!®}|?, may be de-

rived by making choices other than (4. 17) for the func-
tions f(n) and g(n) satisfying (4, 14),

We observe here, and prove_later on, that | G(£)I
in (4.18) may be veplaced by G(E), any real valued
function of £ < C such that

|G(8)] < |G(&)| for all £cC, (4.23)

without altering the validity of the resulting correction
terms. This result is the analog of the replacement
theorem proved in Ref. 6. One might be given, for
example, that | G(z)! < |e®| on |zl =R for some R>0,
in which case the numbers ¢,(R) could be replaced by
the modified Bessel functions I,(R) (k=0, 1,..., N
—J), tables of which are readily available, **
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For the case G(z)=e?, R=3, and N=2, we obtain for
example the bounds

(1+4)121%0.007987]
-5zl ~32+ 2217

L1
2t g2z
1—2 1,2
z—-32+t52

z+3z (1+i)121%0.007987]
T i-set g [1-3lzlllz-3z+ g7

valid for all z such that | z| <3. At z=(-1+), this
gives the bounds

(4.24)

[(0.2059) + (0. 3235)7] + (0.1015)(1 + ), (4.25)
compared with the correct value
exp(—1+¢)=(0.19877) + (0. 30956);. (4.26)

More generally, in the case of a given analytic func-
tion G(z) it is possible to infer correction terms for
arbitrary [L/M] Padé approximants directly from the
Hermite error formula.2° Let us write

[L/M]=P(2)/Q,(2) (4.27)
in the usual way.?® Then we have
@,(2)G(2) ~ P, (2) =0(z2*1), (4.28)

so that if R,(z) is any polynomial of degree at most M,

R,(2)Q,(2)G(2) - R, (2)P,(2) = O(zL*¥*1), (4.29)
But then from Cauchy’s theorem it follows that
R,(2)Q,(2)G(z) - R, (2)P,(2)

_2EM LR (£)Qu(8)G(8) dE

=5 —£ (& = z)eL (4.30)

for all z interior to C. [The term R, (£)P,(£) has been
omitted from the numerator in the integral because it is
a polynomial of degree less than (L + M + 1) and hence
makes no contribution, ] Hence we have

|Z|L+M+1

|6() =L/ M| < 5T Tom

]{ Ry (£)Qy(£)G(8) dt
[0}

(5 __Z)EL-rM#l

X (4.31)

Any upper bound By, ,,,(2) to the quantity on the right-
hand side of (4.31) can be interpreted as a correction
term to [L/M] according to

[L/M}~(1+ By, 1n(2) < G(2) < [L/M]+ (1+0)Byy,y,(2).
(4.32)

There is clearly a variety of ways for imposing
upper bounds By, ,,, (2) on the right-hand side of (4.31).
The method to be used depends on what additional in-
formation about G(z) one is given, over and above the
implicity assumed knowledge of the coefficients G, n
=0,1, ..., L+ M. Here we suppose that we know the
numbers 0, and y,; . defined in (4.18), and according-
ly choose

M
Ry(2)=Qu(2)= 2 q, (- 2)m.

(4.33)
m=0
If we suppose
L+M+1=2N, (4.34)
M.F. Barnsley and G.A. Baker, Jr. 1025



where N is a positive integer then we have

i}‘ Ry(£)Qu(£)G(E)dE f u(E)G(E)dE 1f | Qu(£)12+ 1G(E)I IdEl
2r Vo E-ErT z)s“”“ “2r —zsz” T2 1= z/El 1EIZF < T £
<1 yom L 1G(E)I |d§l>—
1—|z|c ,%E( 2n }g EVIEN-m g

1

1=12z2lc iy meon-u

Here ¢ is the positive constant defined by (4.12), and the constants o,, ., (/,m’=N-M+1,

Z E Ty, ,,,,qN_,.qN_m. for all |z| <~ .

(4. 35)

)

are the same as defined in (4.18) except that now we allow negative values for the indices where necessary.

Similarly, if we suppose

L+M+1=2N+1,

where N may be zero or a positive integer then we have

QulEPG(E) dE «_C EE (= 1)tem

(4. 36)

LG5 - 1dE| —

g (£_Z)£2N+1

1-lzlc ;5 e 27

c
1721 2 E
—IZIC Ny mreN-M
Hence we have the correction terms

N N
| z|2¥

(1-lzic)iQu)1? z

1 =N-M m’=N-M

B[L/M](z):

2N N N
clzi E Z;

(1 - IZ IC) IQM(Z) 12 19=Neif m?*=N-M

0'1,’

which apply whenever |z| <1/¢. Substituting (4. 38) into
(4. 32) we obtain upper and lower bounds on G(z) for all
Izl <1/c. In the case of the [N+J —1/N - J] Padé ap-
proximants these bounds are identical with the previous
bounds, (3.31) wherein I',S, is given by (4.19).

We see here that the quantities 0.
throughout by the quantities

-+ Can be replaced

(=) £ 1GE) | dE)
Typ 0 = = 4,39
1"ym ZTT &l gm 15[ ( )
(I',m'=N-M, N-M+1, ..., ,6N), without altering the

va;lidity of the resulting upper and lower bounds on G(z).
|G(£)] is any real valued function of £ < C such that
(4.23) holds. This result is immediate because | G(£)]

- 1
Oyt Ny O fOT | 2| <E :

UL JORTL

mt ANyt AN

o eVl Tim

(4.37)

(L+M+1=2N),

(4.38)
(L+M+1=2N+1),

i

can be replaced by |1 G(£)| in the sequences of inequali-
ties (4.35) and (4. 37). In particular, the assertion made
around (4.23) is now proved.

Alternative correction terms B, ,,, of the same
structure as those in {(4.38), and still involving various
of the numbers 0,, ,me» Can be derived by replacing
powers of | £| by powers of 1/c at appropriate points in
the inequalities (4.35) and (4.37). However, we prefer
the By ,,,(2)’s defined in (4. 38) since their derivation
seems to be the most direct. Again, correction terms
involving for example moments of | G(£)!2 instead of
moments of | G(£)! can be evolved by introducing an ap-
propriate Schwarz inequality as a preliminary step in the
the imposition of upper bounds on the right-hand side of

TABLE 1. Showing the various [L/M]+ (1 +4)Bp;4(Z), which can be constructed using the information given in the example (see
text). Bounds on both real and imaginary parts of G(Z) are implied for | Z| <3.

wﬂ 1

2
o 1, 4+40.62693] 1 (1+4)1Z|2[2.78752] 1 - +4) | Z|2[1.38480]
1 1-I7Z] 1-Zz~ (a=-31zM1-zF 1-z+3Z2 7 a-31zINW1lz+3i2212
1 1+2Z {1+4)[0.542310] 1+%Zi(1+i)|ZI2[0.148239] 1+3Z (L+3)| Z14[0.0319467]
1 1-37Z] 1-iz"@-31zN11-1z2 e (1—%lZ|)|1-%Z+é22|2
1
9 1+Z+%ZQi(l+i)lZl2[0.180770] 1+2Z+5 2% (L+4)| Z] %0, 0228993}
1 1-312] 1-3Z  @-31Z1)11-3Z2
5 1+z+§Zl+%;Z3 (1+4) [ Z|*[0.0602567] .
' 1 1-—5|Zl
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TABLE 0. “Padé table” of upper and lower bounds on G(1),
see example in text,

1 2
3.4404 +oo 10. 3088
0 1.4404 e —6.3088
. 2. 8135 3.38894 2.85836
1.1865 2.1106 2.47506
) 2, 7711 2.8273
2.2288 2.6727
. 2. 7570
2.5763

(4.31). Bounds obtained in this way can be shown in the
case of [N - 1/N] to correspond to choosing f(n) and g(n)
satisfying (4. 14) distinct from the symmetrical choice
(4.17). Finally, one can choose R,(z) different from
©,4(2) in (4.31). In this case we have found that it is
difficult to impose upper bounds on the right-hand side
of (4. 31) which are efficient and which at the same time
require simple sets of given information about G(z).

We consider the application of the bounds given by
(4. 38). Suppose for example we are given that a certain
analytic function G(z) is regular within and on the con-
tour |zl = R, that G(z) is real on the real axis within C,
that we know the Taylor series coefficients G,, n=0, 1
...,2N -1, and that we know the moments ¢,(R) de-
fined in (4.22), for £=0,1, ... ,K, some integer K= 0.

b

TABLE III. Upper and lower bounds on G(x) supplied by [3/0]
& Brr (), [2/1] % By qy{x), and [1/2] + Byy 5y (x) for various
x such that —3 <x<+3; see example in text, For each x the

best bounds obtained are underlined.

Bounds on G({x) associated with

x [3/0] [2/1] [1/2]
~1.75 1.2444 0.4227 0. 2560
~1.4683 0.0115 0. 0553

—-1.50 0.6726 0.3530 0,2679
—0.5476 0.1469 0,1531

-1.25 0.4579 0.3492 0.3091
—0.0464 0.2537 0.2481

-1.00 0.4237 0.3943 0,3779
0.2429 0,3557 0,349

—-0.75 0.4864 0.4812 0.4759
| 0.4355 0.4688 0.4653
-0.50 0.60869 [ 0.60841 0.60733
0.59965 0.60588 0, 60479
-0.25 0. 77890 0.77893 0,77886
0.177839 0. 77876 { 0.77866

+0.25 1.28411 1.28421 1.28414
1.28360 1.28397 1.28376

+0,50 1.6503 1.6525 1.6518
1.6413 1.6475 1.6423

+£0.75 2.1270 2.1422 2.1435
2.0761 2,1078 2, 0670

+1.25 % 3,6090 3.8709 4,0501
3.1046 3.3078 2. 5840

+2.00 { 9,2256 18,8925 18,8010
3.4410 —0,8925 ~8.8010
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Then'we have enough information for the construction of
all [L/M] Pad®é approximants to G(z) complete with cor-
rection terms B ,,,(2), where L and M are restricted
by L+ M<2N -1 and M < K. Thus we can construct a
corresponding “Padé table” of upper and lower bounds
on G(z), valid whenever |z| < R. Seen as a whole this
table should supply useful information about G(z) for all
z such that |z| <R.

Example. Let G(z) be known to be an analytic function,
regular and real on the real axis when |zl < 3; and sup-
pose we know

G,=1, G,=1, G,=3, G,=%, 0,(3)=4.88079259,
9,(3)=3,95337022, and ¢,(3)=2.24521244,

Then in Table I we give the various Padé approximants
to G(z) together with associated correction terms which
can be constructed using the above information. In Table
II we give the corresponding upper and lower bounds on
G(1), The best upper and lower bounds here give

2.7570= G(1)= 2, 6727,

the upper bound corresponds to [3/0] and the lower
bound corresponds to [2/1]. In Table III we compare

the bounds associated with the three approximants [3/0],
[2/1], and [1/2], at various points along the real axis;
for each x the best upper and the best lower bound is
italicized. The advantage of considering the bounds as-
sociated with each of the three approximants is apparent.
We note G(z) could be ¢* in this example.
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The maximal solvable subalgebras of the real classical Lie

algebras*
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The classification of the maximal solvable subalgebras of sl(n, R), su*(n), so*(n), sp(n,R) and usp(p,q) is
given, thus supplementing the cases su(p, q) and so(p,q) performed elsewhere.

1. INTRODUCTION

This article follows the task undertaken by Patera,
Winternitz, and Zassenhaus!? concerning the classifi-
cation of the maximal solvable subalgebras of the real
semisimple Lie algebras, The physical motivation to
this study is the same; it was exposed at length in the
two quoted articles, and therefore we do not reconsider
it. Let us only point out that the symplectic groups,
which are examined here among others, have their own
importance in particular in the context of the linear
canonical transformations in classical and quantum
mechanics® and in some group theoretical models of
nuclei. *

The method used is a specialization of the one devel-
oped by the above-mentioned authors.? However, to
avoid a separate treatment of each algebra by means of
its standard realization as a matrix algebra, we pre-
ferred to use some classical results on the real forms
of the simple Lie algebras.® We recall them briefly in
Sec. II in a form adapted to our further needs. Section
IIT is devoted to the construction of a recursive method
for finding the conjugacy classes of sl(n,R), su*(n),
so(p,q), so*(n), sp(n,R), and usp(p,q) [the missing

case su(p,q) and the case so(p, q) are already known!:?],

In Sec. IV we draw up a list of results by displaying a
representative of each class in term of a matrix alge-
bra; the cases sl(3,R), sp(4,R), and usp(2, 2) are con-
structed explicitly.

1. THE REAL FORMS OF THE CLASSICAL LIE
ALGEBRAS

Let L be a Lie algebra over C, If /) : L ~L is a con~
jugation of L (i.e., an involutary antilinear automor-
phism of L), the set

L,={xe L;Hx=x}

naturally provided with a real Lie algebra structure is
called a real form of L. Two real forms L/} and LD2
are said to be conjugate (or equivalent) if an auto-
morphism ¢ of L exists such that ¢o/)y=/),°¢.

All the real classical Lie algebras are real forms

of the complex classical Lie algebras. Actually

sl(n,C)Dizsl(n,R), n=2,
sl(n,C)[)Z:su(p,q), p+g=n=2,
sl(n,C)Dgzsu*(n), n even = 4,

SO(n, C)[H:SO(% q)5 n>25
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soln, C)Q2 =50%(n), n even >4,

sp(n, C)D1 =sp(n,R), n even =2,

sp(n, C)p, =usp(p,q), p,q,n even, p+q=n>2,

where, since su(p,q) ~sulg, p), so(p,q) ~solg,p), and
usp(p, q) ~usplg, p), we restrict ourselves to the cases
p=q>0.

To descrioe the operators /);, we use a fundamental
representation p : L —End(V) (V~C"), where L is one
of the above-~mentioned complex Lie algebras. With the
exception of the case where L =su(p, q), for each real
form L, there exists always an antilinear transforma-~
tion D : V-V such that

p()x)=Dp(x)D™, yxe L,
D=z

In cases when D is an involution (D*=1I), the represen-
tation p is called virtually real by which we mean that
it induces a (real) representation

p,:L ~End(Vy),

where Vj is the real vector space Vp={ve V; Dv=uv}
(dimoV=dimgVp). In cases when D is an antiinvolution
(D=-1), no such real vector space exists, The rep-
resentation p is called antireal: It induces a “complex”
representation

p, : L —End(V).

Through the representation p, each real form [except
su(p, ¢)] can be characterized by an involution or anti-
involution antilinear operator D. The equivalence rela-
tion between real forms can be transferred to the set
of these operators with the following results:

(A) sl(n, R): Any D such that D*=1. (For example, if
a basis {e;}i4,...,, of V is given, D can be taken as the
complex conjugation K : K (§;v;e;) =7,:v:€;.)

(B) su*(n): Any D such that D*=-1.

(C) so(p,q): The representation p of so(n,C) admits
an invariant symmetric form (, ): VXV —C. Any in-
volution D such that the form {u, v) = (Du, v} is
Hermitian with signature (p, ) [or equivalently such
that the restriction to VXV, of (, ) is symmetric with
signature (p,q)]. 1f (Du, v) = (u, DTv), it is always possi-
ble to take a D for which DT =D.

(D) so* (n): Any anti-involution D such that the form
{u, vy = (Du, v) is anti-Hermitian. It is always possible
to take a D for which DT =-D.
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(E) sp(n, R): The representation p of sp(n, C) admits
an invariant symplectic for m(, ): VXV —C. Any in-
volution D such that the form (,v)=(Du,v) is anti-
Hermitian (or equivalently such that the restriction to
VX Vp of (, )is symplectic). D can be always chosen
such that D7 =- D,

(F) usp(p, q): Any anti-involution D such that the form
(u, v) = (Du, v) is Hermitian with signature (p,q). D also
here can be chosen such that DT=-D,

11l. GENERAL PROPERTIES OF THE CONSIDERED
MAXIMAL SOLVABLE SUBALGEBRAS

The whole argument is based on a Lie’s theorem on
solvable matrix algebras.® Let SCL be a maximal
solvable subalgebras; then its complexification

§’CL’'p=L is also solvable but not necessarily maximal.

Consider then the representation p: L — End(V) of the
preceding section and exclude the special case
Lp=su(p,q). Lie’s theorem asserts that there exists

a vector vc V {p#0) and a weight 2 :S’ —C such that
p(s)v=x(s")v, ¥s'cS’.

Since SC S’ and p{x)D =Dp(x) for all x< L, we have

p(s)v=2A(s)v

p(s)Dv=)Ts)Dv , seS. (1)

The subspace W=Cv+ CDvp, of dimension one or two
depending on whether v and Dv are or are not colinear,
is invariant with respect to p(S) and p(5’); in addition
D : W— W. Notice that the dimension of W is always
equal to two if D is an anti-involution.

To continue, it is necessary to distinguish the cases
where p does or does not admit an invariant bilinear
form.

A L=sl{n C)n=3)
In fact we can trivially extend to L =gl(n, C).
Let us introduce the following two subalgebras:
N={we L;pn): V—V; pln): W—~ W},
Z={zc L; p(z): V= W; p(z) : W~ {0}}.

Z clearly is an ideal of N and S’ C N; since Z, +S is
solvable (Z, =Z N Ly), we have

Z,CSCN, (2)

and S is maximal in Ny =N N Ly. By using the very
definitions of L and Z, it is easy to verify that all the
weight vectors of Z belong to W; from this property and
the inclusion (2), it follows then that W contains all the
weight vectors of S.

Let
A N=—=gl(W), &,:N—gl(V/W)

be the injective homomorphisms defined naturally by

o on the restriction W and the factor space V/W. The
two antilinear operators D, : W~ W and D, : V/W~V/W
induced by D are involutions or anti-involutions together
with D and define the two real forms A,;(N)y,, i=1,2.

It is clear that A‘(ND) :Ai(N)gi' AI(S) (SC is there-
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fore a maximal solvable subalgebra of 4;(N)p,, where
A,(N)D1 ~ gl{d, R) and A,(N) ,~glln-d,R) (d=dimW).

Consider now the question of the equivalence of two
maximal solvable subalgebras S; and S, under the inner
automorphisms of Ly. Let W; and W, be their weight
subspaces; a necessary condition for equivalence is of
course that dimW; =dimW,. If this is the case, then
there always exists a regular mapping T such that
T:W; =W, and DT =TD. This latter equation means
that T defines an inner automorphism of gl{z,C) and
therefore §;~ TS,T-!; it is thus sufficient to examine
the cases when W= W, = W, which we shall now as-
sume. The two subalgebras S; and S; have then the
same ideal Z and A;(S;) is equivalent to 4,(S;) since
they act on the same maximal weight space. It follows
then directly from these remarks that a necessary and
sufficient condition for Sy and S, to be equivalent is that
8,(5;) and A,(S,) are equivalent.

With respect to a basis of V obtained by completion
of a basis of weight vectors of W, the subalgebra S ad-
mits a matrix representation of the form

R, R,
0 R/’
where Ry =4,(S), R;=0,(S), and

p(S) = @)

0 R,
p(Zp) = 0 o

The antilinear operator D can be put in the form

gy 0
D= 0 JZ K}
where K is the complex conjugation and J;J;=+1
(D*=+1), i=1,2.

B.L=so0(n C)orsp(n C)

Let us first suppose that no weight vector v V exists
such that W=Cuv + CDvy is isotropic with respect to the
invariant bilinear form. V therefore admits the direct
decomposition

V=WoW,e oW,

where W; =Cyv; +CDv;, i=1,...,%, is a nonisotropic
weight space. This is due to the fact that V is always
a direct sum V=(W; ¢+ W) D (W; P+ W;)* of two
subspaces invariant with respect to p(S’). The subalge-
bra S is therefore Abelian and since it is maximal, it
is a compact Cartan subalgebra. These subalgebras
always exist except for so(p,q) when p and g are both
odd numbers. The dimension of the W; is always two if
n is even. If n is odd, the dimension of one of the sub-
spaces W, is one, and that of the rest is again two.

Let us now suppose that at least one weight vector
ve V exists, such that W=C»+ CDv is isotropic (W is
then in fact completely isotropic since D7 =%D). Let
us introduce the two following subalgebras:

N={ne L; p(n): V = V; p(n) : W* — W*; p(n) : W—~ W},
z={zcL; p(z): V=W p(2) : W*—W; p(z) : w—{0}},
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where W* denotes the orthogonal complement of
w(wc wh). [if W=w* (2 dimW=dimV), there is noth-
ing more to add. |

As for the preceding case, we have
Z, CSCN,

from where it follows that S is maximal in N and that
all the weight vectors belong to W.

Considering the three homomorphisms

Aq:N—gl(W)
Ay N —gl(WH/W)
Ay :N—gl(V/WH)

induced naturally by p on the restriction W and on the
factor spaces W*/W and V/W*, we see at once that A,
and A4 are surjective. We also see that A,(N) is equal
to the orthogonal or symplectic Lie algebra of the endo-
morphisms of W*/W with respect to the bilinear form
induced by the bilinear form on VX V. On the other
hand, since D: W- W and D : W* ~ W*, this operator
induces the three antilinear operators Dy: W—W,

Dy W/ W—~W*/W, Dy:V/W*—V/W*, which are in-
volution or anti-involution together with D. These three
operators define three real forms a;(N), , i=1,2,3 and,
of course, A,-(N)yi:Ai(Na). If d=dimw,’ A4(S) and A;3(S)
are maximal solvable subalgebras of & (N)uiz A.f,(N)D3

~ gl(d, R), while A,(S) is a maximal solvable subalgebra
of A, (N} 2 this latter is of the same type as L, that is,
isomorphic to so*(n -~ 4) if Lp=so*(n), to so(p-d,q —d)
if Ly =so(p,q), to spe~2d,R) if Ly=sp(n, R), and

to usp(p - 2,9 - 2) if Ly=usp(p, q).

For the question of equivalence of two maximal solv-
able subalgebras S; and S, of Ly, it is easy to show, in
the same way as for the preceding case, that a neces-
sary and sufficient condition for S; and S, to be equiva-
lent is that the dimension of their weight spaces be the
same and that A,(S;) ~ 4,(S,).

With respect to a Wift decomposition of V, a maximal
solvable subalgebra S which is not a compact Cartan
subalgebra admits a matrix representation of the form

Ry Ry Ry
o)=| 0 B R |, )
0 0 R,

where By =44(S), Ry=2,(S), Ry=04(S), and
0 R, R,
0 0 R
0 0 O

p(Zp) =

The antilinear operator D can be put into the form

with J;J; =+ I(D® =+ I). For the matrix B associated
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with the bilinear form (, ), we have

this matrix is symmetric or skew-symmetric depending
on the symmetric or symplectic character of (, ),

The above discussion makes it clearly that the prob-
lem of classifying the maximal solvable subalgebras of
a classical real Lie algebra either is immediately
solved (compact Cartan subalgebra) or can be reduced
to the classification of the maximal solvable subalge-
bras of a Lie algebra 4,(N), of the same type as L,
but of lower dimension. We have thus provided a re-
cursive procedure for constructing the required
subalgebras.

IV. CLASSIFICATION AND EXAMPLES

For su(p, q) and so(p, q) we refer to the two quoted
paper, Refs. 1 and 2. The remaining cases are con-
sidered in the order of increasing difficulty.

We symplify our notation in identifying S with its
representative p(S).
A.su* (2r) [r=2,su* (2) Zsu (1, 1]

D*=—1I; henceforth dimW=2,

The recursive procedure just described allows us to
represent each maximal solvable subalegra by a matrix

A‘l
s
S: A2 o
0 °.
A,
with
A; O
A= o %) NeC.

3

Hence there exists only one conjugacy class of maximal
solvable subalebras of su*(2v).

By choosing

J 0 ;
p=| - )K withd= _01 é ,
0 J

the condition DS = SD implies for the block
decomposition

Ay Ay ott Ay,

Agy vt Ay,
S= . .

a;; by a; 0
A= _ ifi<j, A= _
i 5;] (li] 3 1t 0 i
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and [from tr(S)]
Z; (ay:+a;5) =0.

We notice that the 2X2 matrices A;; are nothing else
than standard realizations of the quaternionic numbers.

B. so* (2r} [r>2, s0* (2) Zso (1, 1}]
D*=-1

A first conjugacy class is furnished by the compact
Cartan subalgebras, With respect to a weight vectors
basis, these latter are represented by

Ay 0 ia, 0

with 4, = , @GER

0o ‘A 0 -ia

r

In this same basis, D can be chosen as

D= . ‘K,
0 J

while the matrix associated with the symmetric form
(, ) would be
iK 0
B = '. y K= ;) :i
0 iK
The other conjugacy classes contain subalgebras rep-
resented by matrices of the form

¢

1ss< [g] {[x]=entire part of x)

where
A, O
4=\o x,
and where E is either a compact Cartan subalgebra of
s0*(2y — 4s) or is @ (void) if s =#/2 (which implies 7 is
even). Taking into account the conjugacy conditions just
found, we see that the conjugacy classes are uniquely
determined by the dimension of the Cartan subalgebra
E. Hence there exist [7/2]+1 conjugacy classes of
maximal solvable subalgebvas of so*(2v).

By keeping the same matrix form for D, the matrix
B becomes here

L iK
B 0 ik
B
JIK 0
iK
1031 J. Math. Phys., Vol. 17, No. 6, June 1976

with
iK 0

., or 4,
0 iK

s
il

which permits us, in particular, to verify that

-2 0 A, O
0 X

0 -, ifA,=

&

The other matrix elements of S are computed by means
of the two conditions

DS=5D, BST=-SB.
C.usp [2p, 2q) [p+g=r>1,usp (2, 0) =su(1, 1)]

D*=_1.

Here also, a first conjugacy class is furnished by the
compact Cartan subalgebras

Aq, 0 :
S= . , Ap= o 0 ; GER,
0 A, 0 -ia,
for which
J, 0
D= . K,
0 J
J.
. 0 P
B= J-J.
0 ‘. }61
-

For the other conjugacy classes, a matrix represen-
tative is given by

Ay,
. *
OAS
S= E 1<s< R
Cs, s g
0 °,
G,
where
A, 0
A=\o x,

and where E is either a compact Cartan subalgebra of
usp(2p — 2s, 2q¢ — 2s) or @ (which implies p=g). The
situation is therefore the same as in the preceding case:
The conjugacy classes are uniquely characterized by
the dimension of the Cartan subalgebra E. Since p =g,
this dimension varies between 27 — 2¢ and 2# by steps

of 2. There exist consequently g + 1 conjugacy classes
of maximal solvable subalgebras of usp(p, q).

Marcel Perroud 1031



Taking the same D as above, putting

0 .°K
%
B= B
-K
K 0
J, .
. 0 b
with B = J_J or #,
0 .. qg-s

and considering the conditions
DS=S8D, BST=-SB,

we can compute all the elements of S, In particular,
we can verify that

-X, 0 A, O
0

Cp=

0 -, X

Example: usp(2, 2): Since g=1, there exist two class-
es; with

D= K

O = OO

0
0

a representative of a compact Cartan subalgebra is

ia 0 0 0
0 —-ia 0 O
- =R,

5=V o 0 @ o | ®PE

0 0 0 -1ib
when

0 1 0 0o
-10 0 O

B= 0 0 0 1
0 0-~10

A representative of the other class is

A 0 ia 0
OX 0 -—ia

S, = 00 -% o , r¢C, agR,
00 0 -

when

0 0 01
0 0 10

B= 0 -100
-1 0 00

Since usp(2, 2) ~ so(4, 1) we can compare these results
with those obtained in Ref. 2.

D.sl (7, R)

D*=1.
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The maximal solvable subalgebras admit a matrix
representation of the form

S = At Az’. >
o -a,
where
)xj 0
Aj: 0 Xj or Aj:(cj)’ )\JEC, CjER.

Since D is here an involution, we have dimW=1 or 2.
With respect to a basis of vectors belonging to Vp, we
should have

-b;
or A;=(c;), a;b;,c;cR

i G

with a constraint on the a; and ¢; due to the zero trace

condition. All the elements of the matrices S are real

because D =K.

Each conjugacy class is therefore uniquely char-
acterized by an ordered set of numbers
(degAy, degA,,...,degA,), where degA;=1 or 2 and
Vi degA; =n. The number N, of conjugacy classes of
maximal solvable subalgebras of sl(n, R) satisfies, by
virtue of the recursive procedure, the equation

N, = n-1+Nn-2;

since Ny=1 and N, =2, N, is simply the Fibonacci
number?

1 [{1+V5\" /1 —xfs‘) ]
N"‘F"‘FK ) -(=) )
Example: s1(3,R): There exist three conjugacy class-
es (1,1,1), (1,2), (2,1),

a b c
Sqp=1{04d e ,
00 —a-d
-~2a b ¢
Sqp=1| 0 a-d},
0 d a
a -b ¢
5(2'1): b a d o
0 0 -2a

[The classification of all subalgebras of sl(3,R) was
performed by Néno. ]

E.sp (2, R) [r =2, sp(2, R) =52, R)]
D=1,

The conjugacy class of compact Cartan subalgebras
is represented by

Ay, O 0 a
S= . A.= a,c R
0 -4, ) 7" a; 0 > ’
for which D=K and
J, 0
B= ..
0 J
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The other conjugacy classes of maximal solvable sub-

algebras admit a representative of the form

Ai. *
.As
S= E , 1sssvy,
CS.
] .C1
with
a; -b;
A=y 4 or A;=(c)), a;,b;,c;<R,

J £

and E either a compact Cartan subalgebra of

sp(27 — 45, R) or @ (which here is always possible). We
have here D=K and

0 .K
AK.
B= B
~-K
._K. 0
J, 0
with B= °, or g.
0 J

From the conditions
$=5 and BST=-SB,

it is possible to compute the elements of the matrices
S; in particular we have

c -a; b, ' a; -b;
T \-5; —a if 4= b, a j’
c;=(-c,) if A;=(c;).

Each conjugacy class is therefore uniquely charac-
terized by an ordered set of nhumbers
(degAy, ..., degA,; degE), with degA;=1 or 2,

0<degE<yn and 2 Z} degA; + degE = 27.

The number N, of conjugacy classes of maximal
solvable subalgebyas of sp(2r, R) satisfies the recursive
equation

N,=1+N,;+N,, with N;=2 and N, =4,

Putting M,=N_+1, we obtain M, =M,y + M,_, with
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M; =3, M,=5. Henceforth
Mr:FNZ and erFr-tZ -1

Example: sp(4, R): There exist four conjugacy class-
es: (6) (the compact one), (1,1;0), (1;2), and (2;0):

0 a 0 O 01 0 0
-—a 0 0 O -10 0 0
So=1 0 00 5|2 \o 00 1)
0 0 ~50 0 0-10
ab c 0 0 01
s 0e O 0 0 10
WLO= | g5 g _¢ —b 0 -100]°
00 O -1 0 00
a b ¢ d 0 0 01
s 0 0 ¢ ¢ 0 0 10
U= 1 0 -2 0 ~b 0 -100])"°
0 0 0 -a -1 0 00
b ¢ d 0 01
—bae c 0 0 10
= B:
Sa o 0 0 -a -b |’ 0 -100
0 0 b =-a -1 0 00

Since sp(4, R) ~ s0(3,2), we are able to compare these
results with those given in Ref. 2.

V. CONCLUSION

With this article, the classification of the maximal
solvable subalgebras of the classical real algebras is
completed. The real exceptional Lie algebras (E, F, G)
may be treated in the same way, although some matrix
manipulations become uncomfortable to handle. They
may represent some physical interest in view of the
recent renewal of interest in the exceptional Lie groups
in elementary particle physics.
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Quantization as deformation theory
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We show that any rule for quantization of functions on the phase space of a dynamical system is equivalent
to a deformation of the Poisson bracket, in the sense of Lie algebras. All Schrédinger-type quantizations
are equivalent mathematically but not physically. We examine whether a quantization rule exists in which
the Poisson bracket of the free Hamiltonian and any function not more than quadratic in momentum gets
quantized into the commutator of the quantized versions of these two observables. We show that if the
(Riemannian) configuration manifold is irreducible, this condition uniquely specifies the quantization of
these functions, in the cases when it can be satisfied. However, it can only be satisfied for systems whose
configuration manifolds are one-dimensional, or have vanishing Ricci tensor, or are spaces of constant
curvature. Thus the condition will not serve as a general physical principle which could be invoked to fix a

quantization rule.

1. NOTATION

M =Riemannian configuration manifold of a dynamical
system, metric tensor g, local coordinates ¢! - - -¢".
T'M = space of real C* fully symmetric contravariant
tensor fields S on M with valence v(S) =s. C4S)
= Sil""'S(q)piipiz -+ - p;,=homogeneous function on phase
space T*M associated with S. [S, T]e Ty
=Schouten concomitant, ! related to the Poisson bracket
by

{Cs(s)a Ct(T)}: - C&t-l([sy T])

A=DL  T®M=graded Lie algebra of sequences of sym-
metric tensor fields with Schouten concomitant as Lie
product. This algebra is isomorphic to the Lie sub-
algebra of C~ functions on 7*M which are polynomial

in the p’s.? H=L?(M, €) with the measure given by g

= Hilbert space of wavefunctions ¥ on M.

2. QUANTIZATION AND DEFORMATION THEORY

Any quantization scheme associates each classical
observable C(S) with a Hermitian operator Q4(S) on H.

If e TOM is a scalar field on M [so ¢ =Cy ()], then
in the Schrodinger representation the associated quantum
mechanical operator is given by

(Qu()T}n) = ¢ (m) T (m), 2.1)

I Xe T®M is a vector field on M [so that C;(X)(q, p)
:X"(q)pi] the corresponding quantum mechanical opera-
tor is given by (for example®)

mae M.

@ (X) U =4(-i7X'3,; + conjugate)¥ = — if(X3,¥
+ 3 (divX) ). (2.2)

With this quantization rule, the elements of the Lie sub-
algebra A; = TOM® TOM of A are quantized canonical-
ly, i.e.,

[Q(S), (T == 7Q([S, T], ¥ S, TcA.
For Uc T®M,
Q¥ = 3((~ im?U 2V, V,, + conjugate) ¥ + 7* (D) Y,
(2.3)

where V; is the covariant derivative and a(U) is a scalar
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field which depends linearly on U and its covariant de-
rivatives, but has no generally agreed form. Probably
its form is determined by some physical principle. In
this paper we rule out one possibility for this principle,
which at first sight seemed attractive. Namely, we show
that if a(U)(m) depends only on the zeroth, first, and
second derivatives of U at m [see Eq. (3.3)], one camnot
in a general manifold M choose a(U) so that the commu-
tator of @,(U) with the free Hamiltonian @,(3g™) is ca-
nonical, i.e.,

[Q.(1), Q,(3g™) = - i7Q, (U, 3¢, YU T®M

(although this is possible in some manifolds, which we
enumerate}.

To start, let us choose some particular quantization
scheme, for example, for Se T“'M,

Q(S)¥ = 3(~ im°[si1""isv, - . v, ¥

+ 9, V(ST ] (2.4)
as a reference scheme. All other Schrodinger-type
quantization schemes agree with this one to leading or-
der. The scheme (2.4) leads to commutation relations
of the form

[Q«(9), QD]
=- Z.ﬁ(Q&-t-}([S’ T]) + ﬁzQs+t-3(F‘l (S? T))

+7Z4Qs+t_5(F2(S,T)) +een), (2.5)

This commutator provides a new Lie product on A,
(s, T1'=[S, T+ B#Fy(S, T) + -+,
which is a deformation® of the original Schouten con-
comitant or Poisson bracket algebra.
The map Fy : T¥'MxTHM ~ T3] is a cocycle of
order 2 in the Lie algebra cohomology of A, with the
adjoint action.® If

N TOM~T2N, 7 TOM-TSHM, - (2. 6)

are cochains of order 1 in A, and we alter some given
quantization scheme @ in (2.5) to another one, Q', re-
lated to @ by
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Qs(9)
= Qy(S) + 72Qo((S)) + FEQoy(n'(S) + -+,
then the new commutation relations are
[Q9), Qi(T)]
= = iM(Quea (S, T) + Qe s ((Fy +dn)(S, D) + -+ +),
(2.8

2.7

where
an(s, T =[S, (M1 - [T, n(8)] - n(S, T]

is the usual exterior derivative.® We shall restrict our-
selves throughout to quantization schemes of the form
(2.7). Such schemes are essentially real in that the
quantities P4(S) given by

P(S) = i°Q4(S)

are (anti-) Hermitian if s is (odd) even and the com-
mutators of the P"”s with each other involve no factors
i.

(2.9

It follows from Eqs. (2.8) and (2.9) that all quantiza-
tion schemes in the Schréddinger representation lead one
to the same element of H,(4, A) and in this sense are
mathematically equivalent. However, commutation re-
lations have physical significance, so that they are not
physically equivalent. It may well be that if one chose
a different polarization of T7*M (in the sense of Kostant®)
for quantization, then one could be led to a different ele-
ment of H,(4, A). Following the work of Godbillon and
Vey™'® there has been considerable study of the relation
between foliations and cohomology, but not in connection
with quantization. Effort in this direction might be
fruitful.

It is well known that F; is not exact for any configura-
tion manifold; there is no quantization scheme in which
all commutators are canonical. The problem is to find
a criterion based on physical grounds which fixes the
scheme uniquely. We present a candidate for such a
criterion, together with its physical motivation in the
next section.,

3. TIME DEVELOPMENT

In classical mechanics, for a system with Hamiltonian
$8t(q)pip;=C,(3€™"), the time development of the observ-
able C4(S) is given by Hamilton’s equation

d

7 C9={C(9), Co(zg™} = Con (2™, 5D

In quantum mechanics in the Heisenberg picture, the
equation (2.5) is an equal time commutation relation for
operators Q4(S) whose time development is given by the
Heisenberg equation of motion

d
77 (9 =[Q,(z™), Q:(3)].
Tensors K which satisfy

e, K]=0

are called Killing tensors'; for such a K, C(X) is a
constant of the classical motion.
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In terms of components, if Se T*'M,
[, S+t = 5ttt

where round brackets enclosing indices indicate that
these are symmetrized. The set of Killing tensors is a
Lie subalgebra of A. It is at first sight a natural de-
sideratum that if K is a Killing tensor, then @(K) should
commute with Q(g"), so that constants of the classical
motion provide constants of the quantal motion under
quantization. Such a condition cannot be sufficiently
strong to specify a quantization scheme uniquely in all
cases; most configuration manifolds possess no Killing
fields whatever but have only locally defined constants
of the classical motion.® In terms of cohomology, such
a quantization scheme Q' will exist if, in the starting
scheme @, F; is exact when restricted to the arguments
(¢, K). The manifolds with most Killing vectors are
the spaces of constant curvature, and for these Underhill
and Taraviras'’ have exhibited a quantization scheme in
which classical constants give quantal constants.

In the rest of this paper we examine whether a scheme
Q' exists in which one has a stronger condition, namely,
that for all §

[R'e™), @(9]=-inQ’((g, S),

that is to say, all commutators with the free Hamiltonian
are canonical. In cohomology terms, F; must be exact
when restricted to the arguments (g, S), i.e.,

Fy(g?, 8) =-dn(g™, 9 (3.2

for some 1-cochain 1. [If the configuration space is R"
with the Euclidean metric, the Weyl rule!! satisfies con-
dition (3.1) so we have nothing to prove in that case. ]

(3.1)

Because it is difficult to do better, we restrict our
consideration of Eq. (3.2) to tensors S of valence at
most 2, and to cochains 7 given by the form, for
Ue T®M,

T](U) = nab Uub + nabc Uab;c + Tlabchab;Cd' (3- 3)

Thus we assume that the value of the scalar field n(U)
at the point m of M depends only on the value and de-
rivatives up to second order of U at M; we exclude non-
local dependence.? In order that they be specified uni-
quely by the values 7(l/), we require the tensor fields

7 to possess the symmetries

Tab = Ty

In the quantization scheme (2. 4) we already have con-
dition (3. 1) when S is a scalar field. [This condition is
related to the expression for @(¢X) in terms of @(¢) and
Q(X). See Ref. 13 for details. ]

In the next section we show that the equations
Fig!, X)==angt, X), v Xe T9M,
R U)==-dnig?, ), v Uc T?®M,

nabc = TMbaey  Tlabed = Mbaca = nabdc *

(3.4
(3.5)

yield several conditions on the tensors 7,,, M., and
Maseg- OnN the assumption that the configuration space is
irreducible (that is to say, 14 4t admits no parallel vector
fields or equivalently its holonomy group at any point
acts transitively on the unit tangent vectors there), these
conditions can be satisfied only for spaces with vanish-
ing Ricci tensor and spaces of constant curvature. In
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these cases the solution 7 is unique. The uniqueness of
a solution 17 to Egs. {3.4) and (3.5} is unusual in ccho-
mology theory and requires explanation. One can usual-
ly add to 1 a coboundary, n— n+d6, at will. However,
here the 1-cochain 7 has to map 7'M into T*"®M, and
no exact 1-cochain has this property. An exact 1-cochain
dT, Tc A, acts on Sc A according to the rule

dar(s)=[s, T

and increases the valence by v(T) - 1. The lowest value
which this can take is - 1.

4. CALCULATION

We first analyze the condition (3.4) that F(g™, X)
should be exact. With the scheme @ given by Eq. (2.4),
it is straightforward to compute, for X< T9’M, that

Fi(g?, X) = = $X°, .0 + 3(X4° + X739) . (4.1)

We shall find the most general cochain 7 of the form
(3. 3) which satisfies (3. 4). Substitution of Egs. (3.3),
(2.9), and (4.1) into (3. 4) yields, for all vector fields
X [note that 7(X) =0 since 7 lowers valence by two]

Xanbb;u + Znabxa;b + znacha:bc + znabcha;bOd
== éXa;abb + %(Xa;b +Xb;a);ab

:%(gabgcdxa;bc‘i + ZRabXa;b +R;aXa)- (4. 2)

Here R, is the Ricci tensor and R=R’, is the scalar
curvature. Equating coefficients of the derivatives of X
here requires care, as not all covariant derivatives are
independent. Let us first solve a general problem of
this type.

Suppose we have four tensor fields Qiipeecipy N
=1, ..., 4 such that for all vector fields X,

a; bed a3 be 4 a_
C!a(lu:d)‘)( + aa(bc )X ! + aabXa + ach - 0‘

Then we may conclude that

ad(bcd): aﬂ(bC): Qpp= Q= 0’

since the tensors X°, X% X% ®c) x%®ed) may he chosen
independently at any point. (Once those values have been
fixed, so have all the second and third order nonsym-
metrized derivatives.) If instead we are given that

OQgpea = Apgca = Ugpacs

Cgpe = Upaey  Agp= Oy

and, for all X,

adbcha;de + aabCXa;bc + aﬂbXa;b + aBXa = 0’

then by writing the first two terms as symmetrized and
antisymmetrized combinations, and reducing the anti-
symmetric derivatives of X to lower order by means of
the curvature tensor, we may deduce the following:

(i) g (pedy = 0,
which implies, by simple algebra,

Q(abc)d =0 and Agpea = Xegan -
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(11) aa(bc) = 0:
which implies
Qe =0,
(i) g =30y o Ry",
which, since ¢, is symmetric in ¢b, implies
aljkaRb“k _ aijkbRa”k-
(iv) = 2a;, R, 7.

Applying these results to our Eq. (4.2) we find, from
(1,

%ga(bgcd): 2Mg ped y+
Let us define f;.; by

Nabed = 1&ab8ea + Favca - (4.3)
Then

Saved = Foaca = Favac =Seaa (4.4)
and

Jatvedy =F (e = 0. (4.5)

These symmetry conditions restrict ;. to having as
many independent components as the curvature R ;.
However, f,.s obeys additional conditions besides these.
We find from (ii) that

Nase =0,
from (iii) that

2 — Ray =4 is0eRs ™" (4.6)
and

Fimals " =fiymRa', 4.7
and from (iv) that

Moo= Ry =4 iiRa

= %fijklR”jk;m (4. 8)

where the last line follows from the symmetries of
fism and the identities obeyed by the curvature tensor.
Comparing (4.6) and (4. 8), we see we may replace
(4. 8) by

fijk;;aR”jk:O- (4.9)

In summary, we may regard (4.6) as an expression for
Mg in terms of f,. The latter must possess the sym-
metry properties (4.4) and (4.5) and satisfy (4.7) and
(4. 9). Such tensors f, exist; examples are constant
multiples of the tensor

o

Fivea = 5(280s8ca = Eacst — Baroo) - (4.10)

Hence it is possible to quantise in many ways so that

[QEe™), @) ]=-iQ(g*, XD, XeTVM.

We turn now to the condition (3. 5) that F,(g™, U) be
exact. The analysis is similar but more complicated.
One may verify directly from the definitions (2.4), (2.5)
that the vector field Fy(g™, U) is

Fi(g™, U) = ¢g(0) + B,

where
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O=[g",vl,
LUy = ﬁjbc:bc + ﬂﬁbcc;lb_ ﬁihb:cc)’
and
BUY = H(R U™ = UP.R™) = U
Condition (3. 5) thus states that, for all Ue T®M,
£(0) +8(0) + [, ()] - [U, 2e™) ] =n(D),
which in components is
YR, U = P R,y = U, = 22U,

+ 2(7 U™ +{42unoa * Fread] U = (0= OO . (4.11)

Let us expand the right-hand side in covariant deriva-
tives of U, as we did for 7(U) in (3. 3):
(77 - E)(ﬁ)] = wjabcﬁabc + wjabc.dgqbc"d + wjabc.de{,abc;de-
(4.12)

Equation (4. 11) ensures that no higher terms exist. We
suppose that the w’s are symmetric in abc, and that

wjabc.de = wlnbc.ed
so that they are uniquely prescribed by (4.12).
The symmetrized derivatives U, pebsc, pobied,
U @) are all independent, and
=% € L terms in U and U,

=U® € +terms in U,

Uab cde __
Uab cd __

where U, U’ denote zero and first order derivatives.
Hence we may at once equate the symmetrized coeffi-
cients of U” and U™, Noting that

W 4y, U° = 20, U,

we equate the symmetrized coefficients of U " in Eq.
(4.11) to obtain

f abcd

=w ab(cad)
Equation (4.5) now implies that
wja(bc.m =0
or

wytw, +w,=0,

where w, stands for «’,, . Evidently this implies w,
=0 and so f is a parallel tensor, '*

faved? = 0. (4.13)
This condition contains (4. 9) as a special case, and
also implies (4.7).

Let us assume henceforth that the Riemannian mani-
fold (M, g) is irreducible.!* Then the only solution of
Eq. (4.13) having the symmetries (4. 4) and (4.5) is

=%, (4.14)

where X is a constant and]g is given by Eq. (4.10). To
see this, !% we regard the tensor f""m(m) as a map of
the space T®M,, of symmetric contravariant second
order tensors at m into T®’M,,. Equation (4. 13) implies
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that this map commutes with parallel transport, and
hence commutes with all members of the holonomy
group. Since M is irreducible, the holonomy group is
SO(n). Now T®'M,, reduces under the action of SO(rn)
into the sum of the space of traceless tensors and the
space of multiples of the inverse metric, which are
irreducible under the action. Hence, by Schur’s lemma,

0= a(8%.0°% +6%06°) +Bg®g,,, (4.15)

where the first term is the identity on 7“2’M, and the
second is the projection operator onto the element g° 1
Equation (4. 13) implies that @ and B are constants. The
symmetry condition (4.5) reduces (4.15) to (4.14). 1t
follows from (4. 14) and (4. 6) that

Ty =2Rgp afijkaRbUk 12+ MRy,

To obtain the coefficients of the U and U’ terms in
(4.11), we must compute the terms of those types which
are left over after the cancellation of the symmetrized
third order terms. Equation of the symmetrized U""
terms in (4. 11) yields

(4.16)

5 (bed) sledd) __ o, f b; (cde)
= ch’( ¢+ 277abchqb =2w abc.deUu ’

from which it follows that
- =
wjub (code) 3v ab (Cdoje) =v

where by (4. 14)

(4.17)

ab.cde>

a08ct = Lac8a = La1&ve) T favea
=5[(1 + N gasges = (1 + 50 (Zuca + L0 ]-

We wish to solve (4.17) for the «’s in terms of the »’s.
Notice that there are as many equations as unknowns
since the v’ .4, are symmetric in the first two and in
the last three lower indices, whereas the o’y ,, are
the other way round. Determined inspection yields the
solution

1
3v¢1bcd=K

vje (a.be )d):
(4.18)
which is easily shown to be unique. A direct but lengthy

calculation yields that if w is related to v by (4. 17) and
Voaap, then

—pd J 3(pi
wjabc.de—v de,abc +3v (ab.c e ™ z(v d(a.bc)e+

i Vgped = Vpaca = Vante =
@ ape.ae U = 80,4 U = Ri(0, U), (4.19)
where
Ri(v, U)
= = U7V gpoa R, o + 2U P00 (4R, % ~
+ U %= B04peaRe ™™ + 20400 Rp™)
U7 (904 05y R ™ + 6040 R7%

+ %UasabRaj + 3Uawaj % "+ Vo abBRlarb)'
Equations (4.11), (4.19), and (4. 20) now give
F(RO U = UL R), + (Mg UV = 1, U = R (0, U)

= Wy, U™,

where 7,, is given by (4. 16).

RBabc; j)

(4. 20)

(4.21)

Equating the symmetrized coefficients of U and U’
gives, respectively,
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(A +1DRys,, =0 (4.22)

and
X = BA+R! = 3(X+1)g, R,
== 30 = @A+ E)Z (naB) TE A H 2R (T
(4.23)

The right-hand side of Eq. (4.23) is fully symmetric
in the suffices m#np. The left side, which we have de-
noted ijnp’ is, a priovi, symmetric only in mn. In or-
der that Eq. (4.23) can hold for some ’,,,, we evident-
ly require that X’ mnp 15 also fully symmetric in mnp,
i.e.,

ijrp =X’ mpn>
which gives
(B + 4)ijnp =+ 1)(gmejn - gmnij) .

We now have to discuss cases.

(4. 24)

(i) ¥ dimM=1, then both sides of (4.24) vanish for
all A, and so A is arbitrary. However, f vanishes, so a
unique solution 7 of the form (3. 3) exists,

7(S) = 181181, S
(ii) If dimM >1 and A= -4, then

gmejn :gmnij’

from which, by taking the trace, we see that the Ricci
tensor vanishes. For curved spaces with vanishing
Ricci tensor, again there is a unique solution 7. (We
have excluded flat spaces from consideration by our
irreducibility hypothesis.)

(iii) If dimM >1 and the Ricci tensor does not vanish,
then

A+1 ; .
ijnp: 3A + 4 (gmeln - gmnRJp)r

that is, M must be a space of constant curvature and
A=~ (n+3)/(n+2), where n=dimM. Again 7(S) is
unique.

In each case, Eq. (4.22) is satisfied automatically.
These are the only irreducible configuration manifolds
which admit a Schriodinger-type quantization which gives
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canonical commutators of the free Hamiltonian with
functions which are at most quadratic in momentum.
Any other irreducible configuration manifold gives a
counter example. Hence the hypothesis (3. 1) is no use
for fixing a general quantization rule.
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The Schrodinger equation is studied at energy levels above the highest values of the potential for
wavelengths smaller than the scale of the potential variations. The first approximation to the scattering
matrix is then expressed in terms of a single parameter a, representable as, effectively, a Fourier transform.
This is used to prove the transcendental property of reflection for smooth potentials and to obtain the
precise, first approximation to the scattering matrix for a very large class of analytic potentials.

1. INTRODUCTION

One-dimensional scattering has been of considerable
interest in quantum physics, and the case of central
symmetry is formally reducible to it.! Many approxi-
mations have been tried for energies above the maximal
potential value, where traditional WKB approaches are
not applicable even in the quasiclassical limit. A family
of explicit solutions of Schridinger’s equation are due
to Epstein,! and a correct treatment of scattering has
been given by Fedoryuk® for a class of meromorphic
potentials with simple roots. The following reports a
much simpler, and much more general, approach; it
is based on a rigorous optical method, 3 but greatly
simplifies the results there obtained.

The first step (Sec. 2) is to express the scattering
matrix in terms of just two integrals, of which one is
a mere phase correction and the other, a,, akin to a
Fourier integral. Admittedly, it is the transform of
the main unknown function, but that does not preclude
highly informative inferences, for instance, smooth
potentials are seen to reflect but transcendentally®—
which is the reason for the failure® of traditional WKB
approaches,

A combination of contraction, turning point, and
stationary phase arguments is used in Sec. 3 to calcu-
late the explicit, first asymptotic approximation to the
Fourier type transform a, for any potential U{x) analytic
near the real x axis and for which the first relevant
breakdowns of analyticity, further from that axis, are
due to singularities of reasonably common type.

The probability of reflection is then “exponentially
small” in the quasiclassical parameter, but that need
not® imply numerical smallness. In fact, as the sim-
plicity of the following extends promise of generaliza-
tions, so its precision extends hope of some usefulness
for scattering that is barely quasiclassical.

2. FORMULATION
We consider Schrodinger’s equation

hEayyp

5 T - UE)y=0

at energy levels £>1.u. b, U{x} at which the wavelength
bound 274(2m(E - 1. u. b, U)]"}/? = 27¢ is fairly small
(compared with g.1.b. (Udx/dU)]. The “particle” is then
modulated by the potential U(x). Schrddinger’s equation
may be rewritten as
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o A%y __(E-UK)
€T Hav=0, 4= (ElubU)1 @

and a more natural independent variable is

£=J, qb)ax’ @)

in terms of which Schrodinger’s equation becomes

[

1
dgz +OW T =0, o(e)=5m 9. 3)
Since E > U(x), there is no classical scattering. For
simplicity in the definition of quantum scattering, it is
assumed that U — U, =const as x ~— + w0, respective1y7;
the corresponding limits of ¢ are g,. Then® Schré-

dinger’s equation has solutions u,(£), v,(£), u_(£), v_(§)
with the property
exp(—it/e)u, ~1, exp(it/e)v,~1 asx—x (4)

and the derivatives of these expressions tend to zero.
Since u_, v_are a fundamental solution system of (1),
u, and v, must be linear combinations

(5)=Ce Y05 o

of u_, v_with scattering matrix S, which the following
aims to estimate,

From (1) and (4), since e and g are real for real
x, v(¥)=u(x), where the bar denotes complex conjuga-
tion, and it follows from (5) that

S22 =511, S =S5q2.
Since (1) has constant Wronskian W, (3, z—p), the matrix

elements are further related by
q./q.=|sq|?~ [s2]?, (6)

which expresses conservation of probability current. It
may also be interpreted in terms of transmission and
reflection coefficients £, 7 defined by the requirement
that (1) have a solution

Yx)=tu,=u_+rv_. (7)
Then

t=sil, r=sp/sy (8)
and (6) takes the form

(@./a )| t[*+ |r[*=1. ¢

For the determination of the scattering matrix, it is
convenient to introduce also a solution representation
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for (1) different from the familiar [“L—G” or WKB(J)”]
representation (4). Substitution in (1) or (3) shows

w@) =g exp(-ig/e)1-a(E) exp [,” d(s)als)ds  (10)
to satisfy (1) if

da__, . 2

dE~ 2ie~ta+ (a° - 1)¢. (11)
For definiteness, let a(t) denote a solution of (11) for
which

a—0 as £——0, (12)
On the hypothesis

d

L ecm®N L), (13)

which implies the same property for ¢(£), by (2) and
(3), a() exists for all real ¢ and |a(£)| <1, and (11),
(12) may be rewritten as

a(t) exp(- 2it/e) = [ ((a(s)]2 - 1) (s) exp(~ 2is/e) ds.

(14)
It follows that

a(t) exp(- 2it/e) = [ (a® - 1)¢ exp(~ 2is/e)ds =a,
as £ — o, (15)

Since g(x) is real, w(x) is another solution, and the
Wronskian

W, w) =ww’ - w'w

:ie'1q|w|2(1— ]aiz)/|1—a[2
=ie g2 - la]H=0

by (12), Therefore, the solution (7) is cyw; + cywy and
by (15) and (4), ¢;/c;=a, and cy(1 - la,1?) =t¢!’%, and
since the constancy of the Wronskian implies

lg|2=1-|a,|? for gle)=exp [ _ o(s)a(s)ds, (16)
it is found from (4), (5), (7), and (8) that
su=t"=./¢)" 81~ la.[H 7t =@./q) %t an)

$12/511=7=12,8/8. (18)

The scattering matrix is thus represented in terms
of the integrals (15) and (16), of which the former will
turn out to be the more important. It is closely akin to
a Fourier integral with large parameter ¢! in the ex-
ponent, because® a(£) — 0 with € uniformly in £ on R, if
only #’(x) € L(R). It therefore yields to the asymptotic
methods developed for Fourier transforms, and that
implies a great deal of immediate information,
even though (15) only represents a, as the trans-
form of an unknown function. For instance, if the
potential U{x) is smooth, say, “gentle® in the sense
Ulx) € C*(IR) with d"U/dx" e L{IR) for every n, then
1), (2), (3), (11) show ¢(£) and a(¢) to inherit this prop-
erty and'® (15) shows a, to be transcendentally small in
€. The converse holds equally“’: transcendental small-
ness of a, requires gentleness of the potential. True
exponential smallness of a, is seen from the Laplace
integral theorem to require analyticity of a(t£), and
hence also of the potential U(x).

a+

a+

The converse is also known®: If U(x) is analytic on a
strip about the real x axis of positive minimal width,
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and U’(x) - 0 as |Rex| — = in this strip locally uni-
formly in Imx, and U’(x) € L(- «, ) with respect to Rex
at fixed negative

Im¢=Im [ q(y)dy=~-c,
then d > 0 exists such that
a,exp(2¢/e)—~0 ase—0 for O<sc <d, (19)
Since 1. w. b. la(£)| — 0 withee,
g—1 ase—0, 20

by (16), it follows that g contributes to the first approxi-
mation for the scattering matrix only the (small) phase
of sy;; for completeness, it is given in the Appendix.

It is desirable, however, to mention the following
implication of these simple results. The most common
approach to quasiclassical scattering, by WKB or simi-
lar or equivalent procedures, can play no useful role at
all in above-barrier scattering by potentials smooth
enough to make the reflection (18) transcendental, * This
is not only because those approaches can lead to ap-
proximations for reflection only by semifortuitous
accident, Even the correct, asymptotic expansions for
tvansmission obtained by these approaches are almost
irrelevant under the circumstances envisaged, because
(9), (18), (19) then show transmission to differ in mag-
nitude only transcendentally from [E - U(~ =)/

E - U(=)]'/?; all that can ever be achieved by the
asymptotic expansions is a description of the small
transmission phase correction caused by the barriers.

3. SCATTERING PARAMETER

We therefore focus attention now on the scattering
parameter a,, from which the scattering matrix can be
computed by (17), (18) (except for small phase correc-
tions), and on the plausible case of an analytically
smooth potential U(x). The estimate (19) then suggests
that the amount of reflection is determined by the man-
ner in which this analyticity breaks down with increas-
ing distance from the real axis of the § plane. More
precisely, by (15) and (11), the issue is the analyticity
of the modulation function ¢ (&) defined by (1)—(3). The
breakdown will be assumed due to roots or singular
points of the potential U of a reasonably common type:
U(x) is assumed analytic on a neighborhood N of the real
axis, except for a set Sy of “transition points” x; of type

Ulx)=E = Upglx — x¢)"(1 + @(x)) (1)

with real v, U#0, Q(x) analytic at x,, and &(x,;) =0,
such that Sx has no limit point,

0<g. 1. b, s*ilmg!:m, (22)

and no other boundary point of N has |Im¢| =m. For M
independent of ¢, moreover, ¢(£) € L(- «, - M) L (M, ©)
with respect to Re at Imé=-m, and U'{(x)—~ 0 as

{Rex| — « uniformly in |Imx| <m/q, .

The class of potentials thus envisaged includes not
only the polynomials and rational functions, but also the
entire meromorphic functions of Fedoryuk? and the
transcendental class of Epstein! and many more, Since
branch points, even of infinite order, are admitted, it
may be conjectured that the results below will be found
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to extend also to logarithmic branch points when their
turning point structure becomes known,

The asymptotics of the Fourier type transform (15) is
discussed elsewhere® in detail and it will help to sum-
marize here just the essence of the argument. If the
path in (15) can be shifted from the real axis to a paral-
lel line in the lower half-plane of £, then a constant, ex-
ponentially small factor exp(- Img/e) can be extracted
from the integral, after which standard methods may
suffice for its treatment, The best exponential factor is
obtained by shift to the line L: Im{ =~ m, but two ob-
stacles are in the way: ¢ is (nonintegrably) singular at
a transition point, and (15) indicates that a(f) might
itself contain exponential factors—which could spoil any
benefits from the shift of path.

Envisage first the case of a single transition point,
x4, with image &, on L. The obstacles can then be over-
come by a combination of a contraction mapping for the
nonlinear integral equation (14), to the left of £;, with
turning point results!! at &, and with another contrac-
tion for (14) to the right of £,. This serves to establish

Lub. la()|—=0 ase—0, (23)
Ref<Ref ~ve
, T 2i(£ - &)
l.u.b. a(t) - 2icos )e -0
Rec)Re{o-n»/'e (g) (V+ 2 P €

ase¢—0 (24)

on L and that the path in (15) can indeed be shifted to L.
But then combination of (23), (24) with the Riemann—
Lebesque lemma leads, as for a Fourier integral, to
the principle of stationary phase!® for the integral on

L with (only dominant) critical point £, i.e.,

@.” e:(-);ﬁ (@ - 1)¢ exp(- 2it/e)dg =1

for any 8> 0. The Fourier type transform has now
served its purpose; it was arrived by observing in (11)
that (a% - 1)¢ exp(— 2i&/e) =d(a exp(~ 2¢/¢))/dE, whence

I= lim  a(f)exp(-2it/e)— lim  a(E)exp(— 2it/e)
(E=gg)/ emso (E=8g) /€ ~a0

and so by (23), (24),
a,~ 2 cos <V7T+ 2) exp (- 2i&,/e) (25)

with v defined by (21) and & = [0 q(s)ds by (2).

For the case of several transition points &4,...,§,
with Im§; =- m, the combination of contraction with
turning point theory needs to be repeated for each and
it is then found?® that the shift of path in (15) remains
justified and a(¢) exp(~ 27£/¢) increases by (25) (with the
appropriate values of v and &) across each transition
point. By the principle of stationary phase, therefore

v+

j=1

k
a,~2 25 cos( u 2)6)11)(- 2i,/e)

.TT+ 2) exp(- 2i Reg,/e)
J

&
= 2{ exp (- 2m/e) 12 cos(u
(28)
for any finite number of transition points,

This includes Fedoryuk’s? result for a pair of simple
turning points of a meromorphic function as a special
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case; the additive nature of the contributions of the
individual transition points becomes more visible in the
present formulation,

It is seen from (26) that circumstances can arise in
various ways in which, for certain “resonant” values of
the wavenumber e'l, the contributions of several transi-
tion points cancel out in a,. This need not be limited to
potentials U(x) even in Rex. In practice, however, the
chance of encountering more than a pair [ and these on
account of evenness of U(x)] seems remote, and the
resonant e-sequence is then obvious from (26) and gives
abnormally small reflection.

A somewhat similar effect arises even for a solitary
transition point, if it be a singular transition point with
a value of v (<€ — %) in (21) for which cos[z/(v + 2)]
vanishes in (25). The probability of reflection is then
abnormally small for all sufficiently small e.
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APPENDIX

The phase correction is readily obtained by standard
WKB or equivalent approaches without complex embed-
ding. For instance, if ¢(£) is to assumed to be of bound-
ed variation, in addition to (13), then by the Riemann—
Lebesgue lemma

_/_w ¢ (s) exp(- 2i8/e)=g—E ¢ (£) exp(= 2it/e) +o(e)
unifbrmly for £ R, and hence from (14),

a(E)=- (ie /2)p (&) +0()
whence from (16)

gle)=exp[- (ic/2) [ 2 ¢* dg +0(e)]
in (17) and (18).
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In this article, we introduce ensembles of random matrices in which not all of the matrix elements are
functionally independent. The functional dependence is defined by restricting the class of unitary similarity
transformations which will diagonalize a2 member of the ensemble. The statistical properties of the

eigenvalues are then studied for some of these ensembles.

1. INTRODUCTION

Until recently, most of the work in the statistical
theory of energy levels has been based on rotationally
invariant ensembles of random matrices whose matrix
elements are functionally independent.! Recent interest
in ensembles which correspond to systems with a small
term in their Hamiltonian that is not time reversal in-
variant has led to the study of ensembles which are not
rotationally invariant, Unfortunately, for those ensem-
bles which have been considered, when N (the dimen-
sionality of the matrices) is arbitrary, it is difficult to
study the statistical properties analytically,?™?

Further, recent work indicates that for many physical
systems the assumption that the matrix elements are
functionally independent may in fact be incorrect, 813
Thus, the question of how functional dependence among
the matrix elements would show up in the statistical
properties of the energy levels and the level widths is
of current interest.

In this article we introduce some new ensembles,
which contain matrices whose elements are functionally
dependent. These ensembles are defined in such a way
that the joint distribution for the eigenvalues and rota-
tion parameters can be given explicitly for any N when
the time-reversal—noninvariant term in the Hamiltonian
is of arbitrary size. These ensembles have the added
advantage that the number of off-diagonal elements
which have nonzero imaginary parts can be specified.
Thus, these ensembles offer the opportunity for the
study of the effects on the statistical properties of the
energy spectrum due to the dependence among matrix
elements, the presence of a time-reversal—noninvari-
ant term, and the variation of the number of nonzero
imaginary parts.

In this article we study the level density and spacing
distributions. It is shown that when the number of non-
zero imaginary parts is small, the calculations can be
carried out analytically for some ensembles. However,
when the number is large it appears that one will have
to resort to numerical calculations.

2. MATHEMATICAL DEFINITION OF ENSEMBLES

We shall denote by H the Hermitian matrix corre-
sponding to the Hamiltonian of a system. These matrices
will be assumed to be NXN, where N is large. The real
and imaginary parts will be denoted by R and T, re-
spectively. Since H is Hermitian,
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Ryj=Ry, (2.1)

Tyj==-Ty, i#j, (2.2)
and

T, =0. 2.3)

The ensemble can be specified mathematically by the
joint distribution, P(H), for the N? variables, R,;, ¢
=j, and T;;, i>j. Here we shall consider distributions
of the form

P(H)dH = P(TrH") exp(~ y2 T%) u(H) dH,
where

dH=T1dR; 1 dR;,dT ,,
i k>

(2.4)

(2.5)

and I; is a function only of traces of various powers of
H (i.e., Pis rotationally invariant). The factor u(H)
specifies the functional dependence of the matrix ele-
ments, and can, at least in principle, be expressed
using Dirac delta functions.

Note that the parameter y affects the “size” of the
time-reversal—noninvariant part of the Hamiltonian.
For example, if u(H)=1, y—0* and y— + * correspond
to the orthogonal and unitary cases, respectively.!* It
should be noted that by y— +«© we mean

lim [*dTyy e+ [*7 dT .y P(H)

o+ roo =
= [ dTye++ [ dTy.qy P(TTH")5(T)

= .ZS(TI'R") s
where

5(T)=101 5(T”)-
i>F

Since H is Hermitian, there exists a unitary matrix A
such that

H= AEA',

where E;;=§;;E; and the E; are the energy levels of the
system. The ensembles considered below will be defined
by (2.4) where i (H) is such that for every H the corre-
sponding A can be written in the form

(2.6)

A11261C1, (2. 7)
i-1
A‘-l:eiC‘n S,.-, NZlZZ, (2.8)
r=1
Ay =e,ef4CiCiy, Nzi22, (2.9)
Copyright © 1976 American Institute of Physics 1042



Ay=e, et C,Cp TLS,, N2i>j>2, (2.10)
r=i

Aigi == S, N=ziz2, (2.11)

Ay =0, i+, 2.12)
where

S, =sing,, (2.13)

C,=cosd,, (2.14)
and

e, = exp(iv,). (2:15)

The rotation parameters, ¢, and ¥,, will be restricted
such that

0s¢,<a,<7/2 (2.16)
and

0<y,<b, <27, (2.17)
when ¥=1,2,...,N-1, and

Py =9y=0. (2.18)

It should be noted that A as given by (2. 7)—(2.18) is not
the most general unitary matrix. ® Also, this restriction
on A does not define u(H) uniquely. That is, the restric-
tions on A imply certain functional relationships among
the matrix elements, If we let z; denote those matrix
elements which are taken to be dependent, then our en-
sembles will be defined by choosing u (H)=7,11,5[z;

- zY(H)]. The summation over v is to allow for the fact
(as is shown below) that the relationships between the
matrix elements may not yield single-valued functions.
The number of functions involved depends on the region
considered in the matrix element space (i.e., the limits
of integration on the independent variables). Since it is
possible to select a different set of matrix elements to
be the dependent variables, there is in general more
than one ensemble [i.e., u(H) corresponding to the
given restrictions on Al.

The connection between the matrix elements of H and
the eigenvalues and rotation parameters is given by
(2.8). For A as defined above it follows directly that

Hii:CtgAi+Ei+1’ i:]-)z)---,N’ (2-19)
i=1
Hi;=eefCC;a T1S,, §>1, (2.20)
r=i
where
i
AIEEPUgj’ 2':1,2,...,N, (2-21)
J=1
i=1
I:)i.iE ns?’: i>j:
i (2.22)
El’ l:],
£2E;-E;y, j=1,...,N, (2.23)

and where Ey,;=0. These equations express the N?
variables, R;;, =i, T;;, j>i, in terms of the 3N - 2
variables E;, i=1,2,...,N, ¢,, ,, ¥=1,2,...,N-1.
Thus at most 3N - 2 of the R;; and T,;; can be chosen as
independent variables.
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It can be shown by direct calculation that

N-1
|| = [J(i;‘)\ = ](n s,céAz)/cﬂ, (2.24)
r=1
where J is the Jacobian and where
X=(Ry1,Ryp, ..., Ryy, Rz, Rogs - o« s Byoqyis @. 25)
T12’ T23, LICELS) TN-1,N)
and
y:(El’E27 v ’EN) ¢1) ¢2, e vy d)N-l: 11)1, Z4'}2! seny ¢N—1)-
(2. 26)

Thus, provided that the range of the v; (or equivalently
of the x,) are restricted such that J >0 (or J <0) there
is a 1—1 correspondence between the variables X and y.
Thus, if no further restrictions are imposed on the en-
semble, the x; can be used as independent variables.

Let us now examine some of the obvious functional
relationships between the matrix elements and the in-
verse relationships between x and y. It follows easily
from (2.20) that

T;;=R;;tan(y; - ¥y),

Thus, the #;’s determine the relative size of the imagi-
nary parts of the off-diagonal elements. Note that by
restricting the @; we can specify the number of T';;
which are not identically zero. For example, if we im-
pose the conditions ¥;=0, ¢=2,...,N—1, then T;,;=0,
Vi>i>1, but T,;#0, j > 1. If we also require ;=0, we
have an orthogonal ensemble.

vj>i. (2.27)

If we set j=i+1 in (2.27), the resulting equations can
be used to show that

Nt
Py =20 tan™(Ty50/Ryser), i=1,2,... ,N=1. (2.28)

J=i

Insertion of (2.28) into (2.27) gives the T,;,/R,;, j=i+2
as functions of the R;;,; and T,;,;. Note that this yields
a total of W—-1)(N - 2)/2 independent relationships con-
necting the matrix elements.

From (2.20) it can be shown that
i
|Hys|2Ch = [Hu|*CE TS, j>k>i, (2.29)
r=k

It follows immediately that
B, |Y B 2= |H

Y | Hupl?, j>k>i and k>i'.
(2. 30)

There are (N - 2)(N - 3)/2 independent conditions on the
matrix elements contained in (2, 30). The total number
of independent conditions in (2. 27) and (2. 30) is (N - 2)2.
Thus, there are an additional 4(N +1) independent reia-
tionships. These appear to be of a nontrivial nature.

The ¢;, 1=2,3,...,N-1, can be expressed in terms
of the H;;, using (2.29). In particular, if we letj=4&
+1, Eqg. (2.29) reduces to

| Hinat |°Ch = |y | %CL, S5 (2.31)
Since Cy=1, for k=N-1 we have from (2. 31)
tan?¢y.y = iHiN|2/|HiN-1l2- (2.32)
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The ¢;, i=N-2, N-3,...,2 can now be found by an
iterative procedure using the recursion relation (2. 31).

From (2.19) and (2. 20) it follows that

Eiw=H;+7r;, i=1,..., ,N-1, (2.33)
where
7= & |HyHyr |/ | Huar |- 2.34)

Inserting (2. 33) into the equation 57 (H;; — E;) =0, we
obtain
N1
E\=Hyy~ 27,. (2. 35)
i=2
Thus, aside from ¢,, the eigenvalues and rotation

parameters can be found in terms of the matrix elements
in a relatively straightforward manner,

3. ORTHOGONAL ENSEMBLES

In this section we consider ensembles in which every
T;; is identically zero (i.e., orthogonal ensembles). In
particular, we define

pE)=15(T, )20 11 8[R,;- Y (R)], (3.1)
>t >+l

v
where the {7 are functions of R;; and R,;,;, which are
defined by the restriction that H can be diagonalized by
an orthogonal matrix A of the form given by (2. 7)—(2.12)
with $,=0, r=1,...,N-1,

The joint distribution for the rotation parameters and
eigenvalues, p(E, ¢), is defined by

Port(E, 9)dEd$=PR,;,R;;.) |J | dEd, (3.2)
where

dE=T1dE,, (3.3)

d¢=Ilde,, (3.4)
R, R

J=J ii» H+1>, 3.5
(EJ) d’r ( )

PRy, Riin)EfVRI;HdH':")F(E), (3.6)

F(E)=P(TrH"), (3.7)

dR’'=T1dT;; 11 dR,,, (3.8)

i >+l

and 77 is a constant which depends on the region Vg, It
follows directly from (2.19)—(2. 22), with ¢,=0, that

N1
(n c,A,) c, |
r=1
We shall define Vi by the conditions 0 < ¢, <a, <7/2

and E,>E,,, ¥=1,2,...,N-1. Thus, the joint distri-
bution for the ¢, and E, can be written as

|7 | = (3.9)

Port(E, ¢)=n[<§1 CrAf) C1]F(E). (3.10)
It follows from (2.21) and (2, 22) that
i_vr_illai = Zn‘, bt (®) Ay, (3.11)
where
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N=2
wa(p) =TT S%r, (3.12)
r=1
I
An: I &rr’ (3. 13)
r=1
gr=N-r—-1-m,, (3.14)
N=1
My = 'E n;, v=0,1,...,N=-2,
i=r+l (3. 15)
:0, ¥=N- 1,
and
N-1 1
bn:H<g’+ )5m e (3.16)
r=1 Ny 0

It should be noted that b, =0 if any », >g, +1. Thus, in
(3.11)n,=0,1,...,g,+1. Note also that we have
adopted the convention (§) =1 if g <0,

Inserting (3.11) into (3.10), we obtain

Dort(E, §) =121 Biiva(®) fo(EVop vt (3.17)
n
where
R -t
wn(¢) zdnwn(¢) H2 cr (3- 18)
r=
and
fn(E) ‘—_dnAnF(E)-
The constants &n, d,, and B, are defined as
a N=2 ,
di'= [ 'S%1de, Ti (sing,)*r*!/(2g, +1), (3.19)
r=2
d;' = [ dE A, F(E), (3. 20)
and
B, = bn(dnan)-ly (3.21)
respectively.
It follows immediately that
(3.22)

fort(E) = 772 ann(E);

where f,..(E) is the joint distribution function for all of
the eigenvalues. Equation (3.22) can be rewritten as

fort(E) :gort(E)F(E); (3.23)
where

gort(E) =7 E bn d;ian' (3- 24)
n

Note that g..+(E) is a polynomial function of the E; of
degree N-1,

Since the factor g,.«(E) originates from the Jacobian
connecting the independent matrix elements with the
eigenvalues and rotation parameters, and since the
matrix elements are linear in the eigenvalues it is clear
that the joint eigenvalue distribution derived from any
orthogonal ensemble of the form (2. 4) will be of the
form (3.23) where g..+(E) is a polynomial function of the
E; of degree less or equal to the total number of inde-
pendent R;,;, j={. Further, since any polynomial func-
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tion of the E; can be written as a polynomial function in
the £;, the joint eigenvalue distribution can always be
written as a linear combination of functions of the form
H§V=1§:’F(E). In general, one must treat the linear com-
bination term by term. 18

For definiteness, we shall consider only one specific
case. However, it should be clear that any term of the
form just noted can be treated in exactly the same way
as this particular case.

In particular, we consider

FUE) =i oy (B) =/ ()

N=1
=711 (B, - E,.)F(E), (3.25)

where 7 is the normalization constant, and where n=1
means thatn,=1, »=1,2,...,N-1, This, of course,
serves as the first approximation to f,..(E) as given by
(3. 22) when the a, are small. From (2.19) and (2. 20) it
can be seen that this corresponds to an ensemble where
the off-diagonal elements are very small as compared
with the diagonal elements.

Note that there is a repulsion effect present in (3.25).
However, it involves only nearest neighbors. On the
other hand, it is well known that if the matrix elements
are all independent,

Port(E)=7'T11 |E, - E;|F(E), (3. 26)
i>i

where 7’ is the normalization constant. ! That is, the
repulsion effect involves all pairs of eigenvalues. One
might expect that this difference will not show up in the
level density and nearest neighbor spacing distribution
as clearly as it will in the higher order spacing distri-
butions, e.g., the next nearest spacing distribution.

For definiteness, let us now assume that

F(E)=N!o" exp(- a2J E;), (3.27)
so that
FE)=N!(N=1)1a* 1 (E; - E,,,) exp(- a 2 E;),
(3.28)

where E{>E, > Eg+++ 2 Ey >0,

If Q(E) is any function of the eigenvalues, we shall
define its average as

@ = [ Qf(E)dE. (3. 29)
It can be shown that
n N-1 - N 1
<ENN m & 1>:(N- 1)1 @¥-u-ty 2o (3. 30)
r=1 r=1 v
where
N
M=23n,. (3.31)
r=1

In particular, the average spacing between the nearest
neighbors E, and E,,; is given by

&) =2/(ar). (3.32)

Note that the average spacing, S,,, over m consecutive
intervals is given by
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__1 -1
Srm=r— zr (3.33)
Since
N
E,=27&, (3.34)
k=7

the moments of the distribution, (E\'Es2-+ EX), can be
evaluated using (3. 30). For example, it is easily shown
that

(Ey)=1/(aN) (3.35)

and
N-1
(E,)zori(zxr'1 +225 k'i), r=1,2,...,N-1. (3.36)
k=r

If we let py,,(E) denote the probability density function
of the kth eigenvalue, then by definition

b, oE)= [ 5(Ey— E)f (E)dE.  (3.37)
ElaEza --anNao
It is easily shown that
PulE)=Dy exp[- (k- l)aE]PN-k+1,1(E), (3.38)

where

E E E
PuaBY = [y [ gy eee [ dxf V), 01

(3.39)

=alexp(- aE), n=1.

Here f ‘™ (x) is given by (3.28) with N=x and x; =E. The
quantities Dy , and 7, are normalization constants.

The global level density p(E) is defined as

N
p(E) =kz_f P, u(E). (3. 40)
Since
yoo N
Q(E)= fo Q(E)p(E)dEz’aZ_% QEL), (3.41)

the moments of the level density, 1_27, are given by

E"’:é (ED, (3.42)

The {E}) can be evaluated as mentioned above. In par-
ticular, it can be shown that
E =2N- 1)/a. (3.43)

When the joint eigenvalue distribution is of the form
(8.26) with F(E) defined by (3.27), the level density is
given by!®

o(E)~ a(r’aE)/?(2N - aE)!/2, 0<E<2N,

(3.44)
~0, E>2N.
It is easily shown that
(E"y=N71"'(2N/a)' T +3) T (3)/Tn +2). (3. 45)
In particular,
(E),=N*/2a. (3. 46)

Thus, comparing (3. 42) and (3. 46), we see that when
there is repulsion between all of the eigenvalues, the
“center” of the energy spectrum is pushed up.
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The joint distribution for two mth neighbors, E, and
E,,., is defined by

fk,m(EkﬁEk'bm):fx >0f(x)6(xk_Ek)6(xk+m

1ZRpE eoe 2 Xy

- Ep.p) dX. (3.47)
It can be shown that
Feym =T, m €XD(= CRER) hp, m P -nemet, 1 (Bram) (3.48)
where
Bpym=Ep m=1,
= E):I:m dEpum-y | j;m_I dEpme e | EE': ) dE,, (3. 49)

kem=1

X I1 & exp(— a(E,, +Epy+ere +Epmq)], m>1.
r=k

If we let S=E,- E,,,, the mth-nearest-neighbor spacing
distribution can be shown to be given by
PmD(S) = fo"” AT fo (T +S,T). (3.50)

In particular, the nearest-neighbor and next-nearest-
neighbor spacing distributions are easily shown to be

PP (S) = (ak)’S exp(— akS) (3.51)
and
PiD(S) = ak®(k + 1)} (aS + 2) exp(— aS) + (aS - 2)]
X exp(~ akS), (3.52)
respectively.
The “local” spacing distributions are defined as
P () = (#S)™ 5l P{™(Sx), (3.53)

izk

where S is the average nearest-neighbor spacing for the
region [i.e., S is given by (3.33)]. Thus for a region
where the average spacing is approximately constant
(i.e., ¥y>k)

PO ()= 471y exp(~ 2x). (3.54)

To our knowledge the spacing distributions corre-

sponding to (3.26) and (3. 27) have not been explicitly
studied in the literature.'® However, for those ortho-
gonal ensembles for which the nearest-neighbor spacing
distribution has been studied the distribution is linear
in the spacing near the origin as is (3.51).2%2! On the
other hand, for those orthogonal ensembles for which
the next-nearest-neighbor spacing distribution has been
studied, the distribution is quartic near the origin while
PP as given by (3.48) is cubic.?! Thus, as expected,
the repulsion between next nearest neighbors is now in
fact weaker,

It should be noted that for those ensembles which have
been studied?% 2!

£ (x) = 2717x expl(~ 4~1wx?), (3.55)

Comparing this with (3.54), we see that our ensemble
has a larger probability of large spacing. That is, the
repulsion effect is now stronger for large spacings.
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4. NONORTHOGONAL ENSEMBLES

Here we consider ensembles where not all of the Ty,
vanish identically. In particular, we consider P(H) of
the form (2. 4) with

) =21 T 8[Ryy = )] 11 &[T £, )],

(4.1)

where the prime means that only dependent T, are to
be included. The #j; and £, are defined by the restric-
tion that H can be diagonalized by a unitary matrix, A,
of the form given by (2.7)—(2.12) where ¢, , Up,. .., ¢,
1<sp<sN-1, are independent variables, antd alzl other ij

are equal to one of the ¥y, or vanish identically.

Our ensembles will be defined by choosing the Tkrkr +1
as independent variables. Thus, the product in (4.1) in-
cludes only (m,n)# (ky, k, +1), W7. It can be shown that

RH)RHH: Tk,'k,-i-l

J

Ei; ¢j’ d)kr

4.2)
. Ry, R
= Herk,,d Jort
b Ei5 d)j

where

Ry = CiSiChaqd. (4.3)

The range of E; and ¢; will be as given above for the
orthogonal case while 0 < z,bkr <2m Vv 7.

Clearly, for any case

T4=223T}

>

(4. 4)

can be expressed in terms of E;, ¢;, and y; by using

(2. 20). The complexity of the resulting expression in-
creases as p (the number of independent y;) increases.
Thus, the analysis becomes more complex as p in-
creases. However, one can obtain up to of order N?
nonzero T;; with p =1. Thus, it is clear that such en-
sembles offer an opportunity to investigate analytically
the effects of the number of nonzero T;; on the statistical
properties of the system.

For simplicity we shall consider only cases where p
=1, (i.e., zpkrzz,b, r=1,2,...,M, ¥;=0, j#£k,). For
definiteness, let ;=9, j=1,2,...,M, ¥;=0, j > M.
Note that there are M(N — M) nonzero T;; (i.e., i<M
<j). Thus, we can vary the number of nonzero elements
from of order N (i.e., M <<N or N— M < N} to of order
N? (i.e., M=N/2).

It can be shown that

N-q
f(E, ¢,¥) =nC,S,Cyt} 71_12 C,A,F(E)

X exp(- 2vT% sin%y), (4.5)
where
PN M
T%,:f) C3 I S2al. (4.6)
i=1 r=i
It then follows easily that
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f(E’ ¢) =71'f(E, ¢)port(E’ ¢); (4- 7)
where
F (B, &)= @)/ 1,(/T) expl= YTH)CS1ChAr.  (4.8)

Here I,(z) is a modified Bessel function®? and po;¢ is
given by (3.17). Note that for y=0 (i. e., the unitary
case),

funit(E’ ¢) = 2ﬂnlcisicZA1fort(E, ¢)~

Let us consider first the case M < N. Since we expect
only the details and not the conclusions to differ for
different M, when M is small, we take M =1 for sim-
plicity. For this case, (4.8) simplifies to

4.9)

F(E, $)=nCoh(B)pore(E, ¢), (4.10)
where

h(B)= 27 BI,(B*) exp(- £%), (4.11)

B=Vy4,CSy, (4.12)
and 77 is a normalization constant, Note that

(B, )~1Cypere(E, §), | (4.13)
as B— + =, Since
lim [ G(E, ) (B, $)dEdg

= | G(E, $)port(E, $)dEd¢ (4.14)

for any well-behaved function G, it is clear that there
is a measurable region where (4.13) does not hold. 23

From (3.17) and (4. 10) it follows that the joint eigen-
value distribution is given by

1 (B) =12 Bafa(E)Sppss (4.15)
where

FalB) = a(Ey, Ey) fo(E), (4.16)

ha(By, )= ([ oSt [ 2de,SE Che)/ . (4.17)
and

dy= [ Cisrertde, [ stde,. (4.18)
Clearly, lim,.,.k2(E)=1, so that

f(E) ~for(’.(E) (4. 19)

as y— +«,

A detailed analysis of f(E) entails a detailed analysis
of h,(E{, E,). For simplicity we shall again limit our
discussion to the case when a,—~ 0*,¥7.%! Clearly, for
other ensembles a similar analysis can be done on a
term by term basis.

It follows easily that for a—0*
F(E)=A¢%, f,(E), (4. 20)

where f; is defined by (3. 25) and where A is the normal-
ization constant. For definiteness, we again assume
that F(E) is given by (3. 27). Thus,

fE)= W (N- 1)zaz~/2)g1§1 £, exp(— a2 E;). (4.21)
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One thing which is immediately obvious at this point is
the fact that

lim f(E) # f{(E).

Y= 30

(4.22)

In particular, the limit as y—+* and a; —~ 0* depends on
the order in which the limits are taken.

An analysis of (4.21) is analogous to that given above
for f{(E). In fact many results can be obtained easily
from those given above for f;. In particular, if we let

[Q]= [Qf(E)dE, (4.23)
then when f(E) is given by (4.20),
[Q]=(&,Q)/(Ep. (4.24)
Thus, in particular, from (3. 30) it follows that
I I
[Ey" T &7
r=1
N
=iW-D! "M E + 1) T G, /7 (4.25)
r=2
n, N-1 1
=30, +1) EYN T &7 . (4.26)
r=1

An immediate consequence of (4.26) is that all mo-
ments for any local spacing distribution (where E; is not
involved) corresponding to (4. 21) will be identical to
those for the orthogonal ensemble. Further, it can be
shown that if {E"} are the moments of the level density
associated with (4.21), then

{E"}=E" + (ET)- (ED), 4.27)

0<[E7]- (B < 5(ED, vn>0, (4.28)
and that

(ED/E"~(InN)/N, n=1,2. (4.29)

Thus, for smalln, {E"}~E" as N— +c,

When M~N/2, the analysis is in general much more
difficult than for small M (except, of course, for the
limiting case a,— 0%), and at this point the conclusions
are much less definite. It is clear that since f‘N involves
M +1 eigenvalues the statistical properties will in gen-
eral differ significantly from those of the corresponding
orthogonal ensemble.

It would appear that, in order to obtain specific con-
clusions, one would have to resort to numerical calcu-
lations. Since the primary purpose here was to intro-
duce the above ensembles, we shall not pursue this
case further, other than to note that, as yT% —~ +,

F(E, 8)~Fy(E, ) pors(E, ¢), (4.30)
where
Fu(E, $)=1"CS,C,A, T, (4.31)

Thus, there is a measurable region where (4. 30) does
not hold.

In conclusion, it should be noted that the ensembles
we have considered above can be generalized. In partic-
ular, one can generalize the class of unitary matrices
A, which diagonalize H, While this would tend to make
any resulting conclusions more generally applicable, it
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would at the same time make the resulting joint distri-
bution for the eigenvalues and rotation parameters much
more complicated than those given above. Since the
motivation for introducing the above ensembles was
based on the fact that such ensembles are relatively
simple and at least offer some hope of obtaining analytic
results, such a generalization does not seem desirable
at this point.

*Supported in part by NRC Grant A4625.
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Neutrinos and Bianchi | universes
T. M. Davis and J. R. Ray
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We find that Bianchi I universes allow neutrinos only in the special case B = Cs~ A4, and the neutrinos must
be “ghost.” The solution is a special case of the Kasner solution. We also discuss massive neutrino
solutions in Bianchi I universes. In an appendix we discuss the lack of a Birkhoff-type theorem for plane

symmetry.

In this paper we are interested in the much studied
Bianchi I type universe described by the metric

dst=A'dx? + B*dy* + Ctd2? - di?, (1)

where A, B, and C are functions of { only. For

A+ B+C we find this metric does not allow neutrino
solutions. For the notation and theory we refer the
reader to our previous work. !~

If we specialize the metric to the case B=C#A then
this metric allows only “ghost neutrinos” (vanishing
energy and momentum). ! Since the gravitational field
in this case is determined by the vacuum field equa-
tions, the solution is a special case of the Kasner
metric

ds? =123 gx® + t4/3(dy? + dz%) - di. (2)

By a coordinate transformation this can be brought to
the form

ds® = (kt + 1)V 2(dx? - df*) + (Bt + 1) (dy* + d2?), (3)

where k is a constant. This is the time-dependent plane-
symmetric ghost neutrino solution that is the counter-
part of our static plane-symmetric ghost neutrino solu-
tion presented elsewhere, i.e., the type D “ghost neu-
trino” solution is plane-symmetric but can be either
static or the time-dependent solution given in

Eq. (3).1°3

We note in passing that the vacuum solution (3) re-
quires an extension of Taub’s theorem: “A spacetime
with plane symmetry which is a solution of the vacuum
field equations admits a coordinate system where the
line element is independent of #, that is, is static.””!
In the Appendix we discuss this further.

The last case A=B=C, the zero curvature
Robertson—Walker metric, also does not allow
neutrinos.’

Recently we have discussed massive neutrinos in
general relativity.® The zero curvature Robertson—
Walker metric allows massive neutrinos, the solution
being the Einstein—deSitter dust solution.® The general
Bianchi I massive neutrino solution is found in the same
way and is in fact the Heckmann—Schiicking solution®
with their 9xM/2 replaced by the constant %% found in
Ref, 5.

Further results for neutrino solutions in other
Bianchi universes may be found in Ref, 7.
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APPENDIX

We will use Taub’s notation? in the following proof.
Consider the case of

f"=g"=0, (A1)
where

Al =(f+g)E, (A2)

B'=C'=f+g, (A3)

f=flx+=cilx+1), (A4)

g=glx-D=cylx-1). (A5)

The primes denote derivatives with respect to the
arguments and ¢y, ¢, are arbitrary constants. The co-
ordinate transformation

X+T=@2/p)cix+1-1/2], (A6)
X-T=(2/B)c,(x - 1) -1/2], (A7)
Y=y, (A8)
Z=z, (A9)

where & is an arbitrary constant transforms the metric
to

k?
- 4cycy

+ (X +1)dY? +dzY).

ds? (kX + 1)V 2ax? —aT?

(A10)

If ¢, and ¢, are both positive or both negative, the
metric is the static vacuum solution, i.e., X is a
spacelike coordinate. If either ¢, or ¢, is negative, the
metric is the homogeneous vacuum (special Kasner)
solution, i.e., X is the timelike coordinate. In Ref. 4
only the former case is considered. We can combine
both cases into the theorem: “A spacetime with plane
symmetry which is a solution of the vacuum field equa-
tions admits a coordinate system where the solution
is either the static solution of Refs. 1—4 or the special
Kasner solution in Eq. (3).”

When one solves the vacuum field equations in the
case of spherical symmetry, one finds either the time-
dependent homogeneous solution inside the Schwarzschild
sphere or the exterior Schwarzschild solution outside.
No assumption is made that the variable 7 occurring in
the metric is spacelike or timelike. These two solu-
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tions are joined across the Schwarzschild surface » =2m
to form a solution to the vacuum field equations every-
where outside the real singularity at »=0. Thus, we
arrive at the Birkhoff theorem®:

“.«+ any C? solution of Einstein’s empty space
equations which is spherically symmetric in an
open set V, is locally equivalent to a part of
the maximally extended Schwarzschild solution
in V.”

However, this joining apparently cannot occur in
plane symmetry. Here, one has the special Kasner
solution for all ¢ between the real singularity f=-1/k
and infinity or one can have a static solution between
the real singularity x =— 1/k and infinity. There is
apparently no natural way to join these two solutions
and obtain a solution in an extended manifold. Therefore,
plane symmetry does not have a Birkhoff-type theorem

1050 J. Math. Phys., Vol. 17, No. 6, June 1976

as in spherical symmetry. The vacuum solution in the
case of plane symmetry is not unique; i. e., it can be
either static or homogeneous anywhere. Of course, the
vacuum plane-symmetry solutions does allow a fourth
killing vector just as in the case of spherical
symmetry. ®
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The construction of the irreducible representations of single and double nonsymmorphic space groups is
discussed. The proof is given that for any symmetry element where the nonsymmorphism plays a role there
is a finite group of lowest order such that its irreducible representations engender all the allowable
representations of the little group. For most high symmetry elements the order of this optimal factor group
is only twice the order of the corresponding point group of the wave vector. The computational advantages
of using this group instead of other known factor groups are stressed.

1. INTRODUCTION

All known methods suggested for finding the irreduci-
ble representations (hereafter IRREPS) of nonsym-
morphic space groups do not start from a detailed anal-
ysis of the interaction between the primitive transla-
tions and the space operations containing both a point
.part and a nonprimitive translational part, although
this phenomenon is at the heart of the nonsymmorphic
degeneracy, the so-called sticking together of disper-
sion relations on the surface of the Brillouin zone. 2

The projective representation method, %3 leaving the
ordinary representation theory, enters a domain where
some simple and familiar concepts, as, e.g., the
class-IRREP relation, are lost; it deals on a different
basis with translations and with rotations for the trans-
lational part of the little group Gy is described only by
multiplicative phase factors while its point part is
represented by matrices.

The extension method* uses the technique of finding
a group G from a group P to which G is homomorphic
with a given group H as a kernel; this technique is
applied in order to find the allowable representations of
Gy but again the roles of translations and of rotations
are structurally different so that no insight is possible
into the aforementioned interaction,

A third approach is the induction method®® that fully
exploits the solvability property of space groups’: It is
of global nature and it finds the allowable representa-
tions of Gy in an over-all way. It may be useful in auto-
matic implementations, ¢ but it limits almost com-
pletely any insight into the elementary causes of non-
symmorphic degeneracy.

The most popular approach is the factor group
method, 3~ which finds the allowable representations
of G, from some ordinary representations of a factor
group simply related to the point group of the wave
vector GJ. The presently known methods in this last
class have two distinct disadvantages: The order of the
factor group for most symmetry elements is higher
than necessary, and, moreover, this order may depend
on k in such a way that points on the same symmetry
element have factor groups of different order. Clearly
both from a physical and from a computational point of
view this is largely unsatisfactory.

In this paper we propose a new factor group method
that overcomes both these inconveniences, and we
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demonstrate that it is possible to define an optimal
factor group that reduces to a minimum the amount of
computational work required by a method of this class.

With this optimal choice the allowable representations
of Gy, for all symmetry elements where nonsym-
morphism plays a role, are found from the IRREPS of
another group ¢ whose order is almost always twice,
and never greater than six times, the order of the point
group Gj. The operations of ¢, are the cosets, of a
suitable translation subgroup, whose representatives
are the operations (a!7(a)), o< G}, together with the
products between them and some primitives transla-
tions whose images form a cyclic subgroup of order
2,3,4,6, The optimal factor group @, is the group of
lowest order taking into account the interplay of primi-
tive and nonprimitive translations via point operations,

We divide our exposition as follows: In Sec. 2 the
basic concepts about subduced and induced representa-
tion theory are summarized; in Sec, 3 the algorithmic
tools and the corresponding requirements for factor
group methods are described; in the subsequent section
the group theoretical proof of our factor group choice is
given; then Sec. 5 contains an example and the quantita-
tive comparison of the computational weight for differ-
ent factor groups; the last section contains the
conclusions.

2. INDUCED/SUBDUCED REPRESENTATIONS AND
SPACE GROUPS

It is well known that the exigence of describing the
physical properties of crystals in terms of the Brillouin
zone compels the labelling of the IRREPS of the space
group G by the labels of the IRREPS of the translation
subgroup.

An exhaustive answer to this problem is given by that
part of group representation theory dealing with con-
struction of the IRREPS of a group G starting from the
IRREPS of a normal subgroup T of G, The general
procedure found in Refs. 11, 12 involves the following
manipulations:

—First we construct all the IRREPS y={d(t)} of T
and we group them in different ovdits of T in G, i.e., in
sets of IRREPS of T such that any set contains simul-
taneously yE{d(t)} and all nonequivalent ' ={d’(#)
=d(gtg)} for all g G,
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—For every orbit we execute the remaining steps:

—We choose an arbitrary element y,E{d,(t)} of the
orbit and we find its little group L(y;), i.e., the sub-
group of G such that for all its elements / the IRREPS
yi={d;(t) =d, (Y1)} of T are equivalent to y;;

—then we construct all the allowable vepresentation
of L{y;), i.e., the IRREPS of L(y,) that, when sub-
duced to 7, are a multiple of the IRREP v;;

—finally for every allowable representation of L(y;)
we induce in G a representation that is irreducible.

The IRREPS of G induced by the allowable representa-
tions of the same little group L(y,) form a so-called
associate set of representations of G,!! and we will say
also that they are associated with the orbit of v; in G,

a notion we will use extensively in Sec. 4.

Clearly the procedure breaks down for y; such that
L(y;)=G; anyway it faces us with the problem of find-
ing the allowable representations (not all the IRREPS)
of little groups and the various methods for construct-
ing the IRREPS of space groups differ only in the way
chosen for this problem.

For space groups the normal subgroup 7 is the
Abelian subgroup of translations whose IRREPS are
labelled by a k not outside the Brillouin zone (BZ), while
the different orbits are labelled by a k not outside the
irreducible segment of the Brillouin zone (IBZ). The
little group of yy is indicated by G, and contains all
space operations (ol T(¢) + m), whose point part trans-
forms K into itself or into an equivalent vector. The
group G° =G/ T is the point group of G and similarly the
group Gy=G,/T is the point group of the wave vector K.

As is well known, ¥ if G, is symmorphic or if k is
within the BZ, then the construction of its allowable
representations poses no problems: They are simply
found from the IRREPS {D;(a)} of G§ as

Dy; (] (@) + m)) = exp[- ik - (1(a) + m)]D;(a). (1)

Furthermore, this relation holds also for a nonsym-
morphic G, and k lying on the surface of the BZ if all
the operations « &€ G} transform k into k+ K with K
orthogonal to 7(g) for all Be Ggg In particular this
happens when all such K are zero, i.e., when there is
a GL2 Gy, K’ lying inside the BZ. This happens, for
instance, to the edge K- W and to the vertex K of fee
crystals.

Therefore, a nonsymmorphic space group G requires
a special treatment only for the G,’s satisfying the
following conditions: G, is nonsymmorphic, k lies on
the surface of the BZ, and at least one element of G
transforms K into an equivalent vector kK + K with K not
orthogonal to all 7(8), < G{.

3. FACTOR GROUP METHODS

In the previous section we have shown that the prob-
lem of nonsymmorphism amounts to finding the allow-
able representations of G, for most high symmetry ele-
ments on the surface of the BZ.

If we now consider that there are 157 nonsymmorphic
space groups and at least an average of 10 surface
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elements for each group we reach ~1500 little groups
Gy, every G, having an average of, say, four allowable
representations. Even assuming only one-dimensional
IRREPS and an average of ten distinct point operations
in Gy, we obtain 60000 complex numbers, without
speaking of double and magnetic space groups. This
implies a large amount of tables so that their realiza-
tion and the search for data may be inefficient and un-
reliable. It seems therefore highly preferable to have
an algorithm that can generate automatically the allow-
able representations than to store all this data for a
subsequent search.

A basic tool necessary to solve this problem is an
algorithm for the, possibly automatic, generation of all
the IRREPS of a finite group.

As is shown in Ref. 14, exact (integer arithmetic)
algorithms for IRREPS construction are presently
available only for symmetric groups while for other
groups it is necessary to resort to approximate (float-
ing-point arithmetic) algorithms, where the non-
linearity of the problem increases the difficulties. An
exact algorithm exists only for characters of ordinary
IRREPS? so that a practicable algorithm consists of the
exact generation of irreducible characters followed, for
instance, by the approximate decomposition of the
regular representation using projection operators.
The computational weight of this algorithm is propor-
tional to the fourth power of the order of the group for
the approximate decomposition and to the fourth power
of the number of classes for the exact character
generation.

16

It follows that the highest efficiency, for a constant
number of classes, will be reached with the lowest
order group such that all the allowable representations
of G, are found from its IRREPS, It is also clear that
this lowest order group will be the most suitable for
getting an insight into the geometrical machinery of
nonsymmorphism.

We now briefly describe the factor group choice
proposed in Ref. 8.

Since the matrices of any allowable representation
D* of G, are the images of the elements of Gy in the
homomorphism Gy~ D* with kernel containing the nor-
mal subgroup Ty ={(im)lexp[~ik-m]=1}, it follows
that all these representations are engendered by some
IRREPS of the factor group G,/7T,. Clearly some
IRREPS of Gy/Ty engender IRREPS of G, that are not
allowable. 17 The order of the factor group is

8(Gy/Ty) =Gy xN(T/ Ty). (2)

Expressing K as (u;/01)8; + (ta/ve)gy + (13/v)€3, 1; and
v; being relative prime integers, u; <v; and the g; the
reciprocal lattice primitive vectors, we find

WT/Ty) =viAvaA vy, (3)

where aA b is the least common multiple of @ and b,
Therefore, the order of the factor group Gy/ Ty depends
on k in such a way that different points on the same
symmetry element have factor groups of different
order.
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Another factor group has been proposed in Ref. 10 to
overcome such a disadvantage, but the order of this
group is still not minimal.

In the following section we will show that it is possi-
ble to define a lowest order factor group whose order
depends only on the symmetry element and such that it
reduces the study of nonsymmorphism only to its
analysis on the vertices of the IBZ,

4. OPTIMAL FACTOR GROUP

Definition: Given two points h and k belonging to the
IBZ of a space group G, h is said to be compatible with
k when G} 2G) and ch=h+K, ak=k+ K with the same
reciprocal lattice vector K for any o € Gy,

Theorem: K h is compatible with K, then the set of
all the allowable representations of the little group G,
is in a2 one-to-one onto mapping with the set of all the
representations of the group G, associated with the
orbit of yy in G,. The one-to-one onto mapping is given
by

Dki((al T(a) + m))
= expli(h - k) (T(e) + m)]Dy; ((a| (@) + m)). @

Proof: Step 1: Under the conditions of the theorem and
if G =G}, the relation (4) defines a one-to-one onto
mapping between the set of the allowable representa-
tions of Gy and that of Gy. In fact let us suppose {Dy;} is
an allowable representation of Gy; then from the irre-
ducibility of the representation {Dy;} follows the irre-
ducibility of the set of matrices {Dy;}; from the allow-
ability of the representation {Dk,} and from the mapping
it follows that the set of matrices {Dy,} subduces on 7
a multiple of 4. Furthermore, the mapping implies

Dy ((a] T(a) + m))Dy, ((8] 7(3) + n))
=exp[-i((h- k) - ol (h-K))- 7(8)]
X Dy ((a8| () + m + a(7(8) +n)))

for all the operations of Gy, and owing to the com-
patibility of h with k the phase factor is always 1 so that
{Dhi} is a representation of G,, Interchanging h and

k the same reasoning shows that the one-to-one mapping
is outo.

Step 2: The application of Step 1 to the space group
Gy completes the proof.

Corollary: If h is compatible with k and if
{a;((¢] 7(@) + m)Ty)} is an IRREP of G,/T, that en-
genders an IRREP of G, associated with the orbit of y,
in G, then the set of matrices {exp[i(h-k)- (T(a) + m)]
X a;((a) T(@) +m)Ty)} engenders an allowable represen-
tation of G;.

Noting that if G} = GJ and (h~ k) within the BZ h is
compatible with K, then the previous corollary lets one
find all the allowable representations of Gy, for any k
not a vertex, from the IRREPS of G,/T,, where h is a
vertex of the IBZ lying on the same symmetry element
of k: Thus %(T/Ty) is always lower than %(7/Ty). By
choosing among the possible vertices one that gives the
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lowest %(T/Ty) we have the optimal factor group
Q= Gk/ Ty,

The study of symmetry for points k on edges or on
faces of the IBZ is therefore reduced to the study of fac-
tor groups @y, h being a suitable vertex compatible with
k.

All the preceding results are extended to double non-
symmorphic space groups in a simple way. This leads
to the double optimal factor group @, defined as the
factor group of the double little group G, with its nor-
mal translation subgroup Ty, @y=Gy/Ty, Ty being the
same normal subgroup used for the single optimal fac-
tor group Q. An analogous extension is possible for
magnetic nonsymmorphic space groups.

5. COMPARISON AND EXAMPLE

From the possible values of the coordinates of a
vertex of the IBZ® and from the relations (2)—(3) it
follows that 9@, =s%G}, s being equal to 2, 3,4, 6 and
for most symmetry elements equaling 2. Furthermore,
the multiplication table of the group G,/7, gives the
multiplication tables for all the groups Gy/T}, k being
a point, not a vertex, with which the vertex h is
compatible,

By comparing the optimal factor group @, with Gy/7%,®
it follows immediately that if k is a vertex of the IBZ,
then the two groups coincide, but if k is not a vertex,
then the best choice of k among equivalent points leads
to the double optimal factor group @, defined as the
the order of @, for symmetry lines, and at least four
times the order of @ for symmetry planes. A similar
comparison of @, with the factor group proposed in
Ref. 10 shows that the order of the latter is greater
than the order of the former by a factor equal to the
greatest common divisor of vy, v,, vs, where
h= (/)8 + (o/v5)8s + (3/v5)8s, u; <v,. In addition
the two groups coincide only for integers vy, vy, vs
relative prime. For instance, the order of the optimal
factor groups for the three vertices X, S, and R of the
simple orthorhombic system, is always double the
order of the corresponding point group while the order
of the factor group proposed in Ref. 10 is, respectively,
two, four, and eight times the order of the correspond-
ing point group.

It is worthwhile to remember that a simple factor of
2 in the order of the factor group reduces the efficiency
of the algorithm for IRREP construction by a factor of
16.

As a simple example of the optimal factor group
method, let us obtain the allowable representations of
the little group G for the space group Dt (Puma), D
being a point on the edge D of the IBZ, According to
standard notations a,b, ¢ are the direct lattice primitive
vectors and gy, g3, €; are the reciprocal lattice primitive
vectors so that

D:§g1+1fg2, 0<r<3,
Gh={e, C3, 07,0,  T(CY = b,

TeY)=z@+b+c), T(OH)=z@+c).
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TABLE I. Multiplication table of @p.

Ry Ry Ry Ry
Ry Ry R, R, Ry
R, R, Ry tR, tR,
R, R, R, t tR,
Ry Ry Ry R, Ry

The vertices lying on the line D are X = g, and

S=3(g; +g) so that *(7/Tx)=2 and (T/T) =2. We
choose h=X thus Qp=Gp/Ty, where (¢im)=(cim,a
+myb +mae) € Ty when my is even, Let us indicate with
Ry, Ry, Rs, R, the cosets of Ty that have coset rep-
resentatives (!0), (C3!17(C3)), (0*17(0%), (0*17(c™),
(eta).

As easily verified, (*=R, and / commutes with any
element of @p, so that the multiplication table of Qp
may be directly obtained from its exaustive part shown
in Table L

This table shows the group ¢, is not Abelian and, be-
cause '@, =8, @, will have four one-dimensional and
one two-dimensional IRREPS. The one-dimensional
IRREPS of Qp are engendered by the IRREPS of G, and
therefore they must be discarded, The only IRREP
associated with the orbit of yx in G is the two-dimen-
sional one.

In order to find this IRREP, let us apply to the group
Qp the concepts of orbit, of little group, and of repre-
sentations associated with an orbit. From the multi-
plication table it follows that the direct product group
M={Ry, Ry} *{Ry, t} is a subgroup of @, of index two and
hence a normal subgroup. The two IRREPS of M, y,
and 3, 0dd with respect to the element  are shown in
Table II and they constitute an orbit, for R3'RyR; =R,
The representation D; of @, associated with the orbit of
v is induced by y;. Then the matrices of this IRREP
are found immediately and are given in Table III,

Finally the set {exp[~ irgy - T(@)}D;((a) T(@)) Ty)}
engenders the unique allowable representation of Gj.

6. CONCLUSIONS

We have shown that for any nonsymmorphic little
group it is possible to construct by very simple rules an
optimal factor group of lowest order and such that some
its IRREPS engender all the allowable representations
of the little group.

This optimal factor group allows one to face the prob-

TABLE 11. Irreducible representations of M ':’{Rl,Rz}
x{R,t} that are odd with respect to £,

R, R, ¢ iR,
vy 1 1 ~1 -1
- 1 -1 -1 1
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TABLE IIl. Irreducible representations of @ associated with
the orbit of vy in @p.

Ry R, R, R, t
D, 10 10 0~1 01 -10
01 0~1 1 0 10 0-1
Xp 2 0 0 0 -2

1

lem of nonsymmorphism by making use only of the
simple and well-known concepts of ordinary represen-
tation theory, e.g., the class concept, the relation be-
tween classes and IRREPS, the relation between the
IRREP dimensionalities and the group order, the notion
of direct and semidirect products, !!

It is worth-while to note that this results may be also
obtained by means of tie projective representation the-
ory!® using the concepts of central extension of a group,
of lifting of a projective representation into an ordinary
one, and of projecting an ordinary representation into
a projective one.!?

However, we have preferred the simpler approach of
ordinary representation theory because this theoreti-
cal instrument, which has proved so fruitful in molecu-
lar and solid state physics, seems the most suitable to
give a physical answer to the not yet solved problem
of the sticking together of dispersion relations on the
surface of the BZ,

This paper is also intended as a step in this direction
and further work is in progress.
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Wave operators for multichannel scattering by long-range

potentials
W. W. Zachary
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The methods of Alsholm in single channel scattering are developed so as to apply to multichannel
scattering. For a large class of long-range potentials we prove the existence of partially isometric wave
operators, intertwining relations, and the orthogonality of the ranges of these wave operators for distinct

channels.

1. INTRODUCTION

In multichannel scattering relatively little work has
been done on the proof of existence and/or completeness
of wave operators for scattering systems with long-
range potentials, i.e., those decreasing at infinity
slower than [x|-!"¢, ¢>0. The investigation of such
scattering systems has thus far been confined to cases
in which the potentials are Coulomb or asymptotically
Coulomb,'~® The convergence of momentum observables
in the Heisenberg picture when the Hamiltonian contains
long-range repulsive potentials was established for the
N-body problem by Lavine,” but the existence of the
corresponding wave operators was not proved. Postula-
tional schemes for multichannel scattering to accom-
modate general long-range potentials have been proposed
by Prugovecki® and by Amrein, Georgescu, and
Martin, ®

In contrast with the situation in multichannel scat-
tering, wave operators for long-range potentials have
been thoroughly investigated in the single channel
case. %! In particular, quite general results have been
obtained by Alsholm,* who improved upon earlier re-
sults of Buslaev and Matveev, '* The methods of Alsholm
and Kato'? have recently been extended to treat the prob-
lem of scattering by long-range time-dependent
potentials. '

In the present paper, we apply Alsholm’s methods to
the case of multichannel scattering and, for a large
class of long-range potentials, prove the existence of
partially isometric wave operators, the orthogonality
of their ranges for distinct channels, and intertwining
relations.

In Sec. 2 we formulate the problem giving the motiva-
tion and definitions leading up to the statement of our
results, which are then proved in the succeeding sec-
tions. Because of the length of the proofs, it is desir-
able to split the estimates into two types. In Sec. 3 we
consider those which can be reduced to an application of
Alsholm’s estimates in single channel scattering. Sec-
tion 4 then deals with those estimates which cannot be
so reduced.

2. FORMULATION
We will consider an N-body (N = 3) scattering system

consisting of spinless distinguishable particles de-
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scribed by the formal Hamiltonian

N
A
-2t D V(- 2.1)
=1 2mi 1S§<j <N A ’

in which the two-body local potentials have decomposi-
tions of the following form:

Vi ()=V,5C)+ VR ) (2.2)
where the short-range part V, § satisfies
|VE®)| <C@+ [x|)yted (2.3)

for some constant ¢(j} (depending upon 7 and j in general)
such that 0<¢(4j)< 1. For the long-range part V”L we
assume that the partial derivatives V*V (x) exist and
satisfy

[ VAV, B ()] < C(1+ [x])#oyti), (2.4)

0< ks M<=, for nonnegative integers % and M.

The real-valued constants {a, (i)}, (1<i<j<N)are
called decay exponents, We will take over Alsholm’s
assumptions!? concerning these exponents except for
some trivial changes necessitated by the fact that we
allow 2=0 in (2.4) whereas he does not. This point will
be discussed in more detail below. For the reader’s
convenience, we summarize these conditions as follows,
suppressing the dependence on ¢ and j:

12 ¢,>0, 1+a,>0, kt+ta,>1 for 2sks M. (2.5)

Defining d,= [k + a,] and p,=k + a,—d, for 1<k< M
with the condition M > m +d_,+ 1 for some positive in-
teger m =1, we assume

@,>0, 2.6)
and when m = 2,
Raty + @z > max{0,0,,(a; = p, = Bdps + P, +2)),
2.7

pk+2 + a, — 1 —Pk - B(dh+2+pk + 2)}

for 1<k<m~1 and some p,> 0 such that p,+d,,,+m
<M. When m=> 2,

(=1)a,+ 8 (2) + @pay > 0,1 (8(2) = p, = Bdysy + b, +3))
(2.8)

for 1<k<m -1 and some p, > 0 such that p, +d,,,+m +1
<M.

For m=1,
ma, + a, > max{l,1+p (a,-p-Bld,+p+2)),
(2.9)
Pnta,—p—Bld, +p+ 2)}
Copyright © 1976 American Institute of Physics 1056



for some p= 0 such that p+d,+2<M.

The significance of the positive integer m will be
made clear presently, and we have used the notation

Bk)=8(m —2:k) and g’'(k)=B(m -1;k), (2.10)
where
min(sa, + @,,,), #=0,k>21,h+k<M,
o=s <
Blh;k) = @5, h=-1, 2<sksM+1, (2.11)
a, h=-1k=1.

In later developments we will need to consider poten-
tials of the following form

V3, 7,®= 16231 vV, (®), (2.12)

1€ Fe

in which 7, and #, denote certain disjoint sets of posi-
tive integers. By using the relations (2.2)—(2.4) for the
potentials V, ., it is not difficult to show that similar re-
lations hold for the potential defined by (2.12). We find

=V +VE L (x 2.13
V5 5®=V5, 3,0 V5, 5,0 (2.13)
where the short and long range parts satisfy,
respectively,!®
S — S < «lag 1
VS 3.00=1 ng} Vi@ sc+ x|, (2.14)
1
i€72
vV 5 5,0 = |4§31 VEVE (%) < C(1+ |x| )22,
€%,
OshksM<w, (2.15)
with
¢ = mine(sf) {2.16)
1631
€T,
and
a,=min @), 0<k<M. (2.17)
€3
1€3,

Moreover, it is easily seen that if each decay exponent
a,(ij) i€, jeF,, 0<k< M) satisfies (2.5)—(2.9) then
the decay exponents «, defined by (2.17) will also satis-
fy conditions of the form (2.5)—(2.9).

The decompositions (2.2) and (2.13) are clearly non-
unique. As has been discussed in the case of single
channel scattering by long range potentials, %% this
fact leads to the existence of nonunique wave operators
as we shall see later. Moreover, as also happens in
single channel scattering, there is a clear connection
between this source of nonuniqueness and the nonunique-
ness of wave operators previously discussed from the
algebraic point of view. ?

It is easily seen from (2.2)—(2.4) that the two-body
potentials V, . satisfy

V,;(=)e L3(R®) + L=(R®). (2.18)
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For this potential class it follows from a well-known
result of Kato'” that the formal differential operator
(2.1), as defined on C3(R%*), has a unique self-adjoint
extension H with dense domain D(H)= D(H,) on the
Hilbert space L%(R*"), where H, denotes the unique seli-
adjoint extension of -3 Y, (Ax/ 2m,).

We now want to make a few remarks concerning the
difference between our assumptions on the potentials
V,; and Alsholm’s assumptions in single channel scat-
tering. For the short range part of the potentials we
make essentially the same assumptions as Alsholm and
Kato.!* For the long range part, Alsholm does not make
an assumption corresponding to the 2= 0 case in (2.4),
but instead shows from his estimates for &= 1 that his
potentials approach a finite (in general nonzero) constant
at infinity, We do not follow this procedure. Indeed, it
will be seen in Sec. 4 that our proof of the orthogonality
of the ranges of the wave operators for distinct channels
is not valid if the potentials approach a finite nonzero
constant at infinity,®

It is clear from a combination of Dollard’s formulation
of the multichannel scattering problem for Coulomb-like
potentials!=3 and of the work on more general long range
potentials in single channel scattering'®'*~' how the
wave operators are to be defined for multichannel scat-
tering with long range potentials., We will follow
Hunziker’s approach in the case of short range poten-
tialg'®~?! and first prove the existence of certain opera-
tors associated with cluster decompositions, from which
the wave operators are readily obtained. Thus, for a
cluster decomposition D={C,, . . .,C,} of the N-body
scattering system into n= 2 clusters, we define the
operators 3 as

2}, = s-lim exp(itH) exp(- itH,, — iG®’)

t-x

(2.19)

if the strong limits exist,

Here H denotes the self-adjoint extension of (2.1)
mentioned after (2.18) and H,, the “free” (self-adjoint)
Hamiltonian corresponding to the noninteracting
clusters. G’ is a “renormalization” factor designed to
cancel the long range effects of the potentials. We de-
fine self-adjoint operators G{P™ py

(G2 mp) - ky, . . ., K) =GPk, |, .,kN)fA(kl, ..

for each fe L%(R®¥) in their respective domains. The
Lebesgue measurable functions G{?*™(k,, . . . k,) are
defined by the recursive formulas

k)

GO g G@Im T GP)™ for m> 1, (2.20a)
i<
where
4
GPYm = [ VE (SVC,C, + VG mDgs, (2.20b)
0

In (2.20a) the summation runs over all pairs (¢,) link-
ing different clusters and in (2.20b) [/, . denotes the
relative velocity of the two clusters C, ‘ahd C, linked by
i and j,

It can be shown that the positive integer m > 1 which
appears in (2.7)—(2.10) and (2. 20) labels the minimum
number of iterations required in (2. 20) in order to have
the limits in (2.19) exist, just as in the corresponding
situation in single channel scattering, *'* In this con-
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nection, we note that the iterations in (2.20b) are made
for each pair of indices (,j) independently, i.e., the
iterations do not mix in other values of ¢ and j. If we
were to use iterations on the total G’ as defined in
(2.20a) then when m > 2 (i.e., when iterations are re-
quired) the “renormalization” term for the potential V
would depend upon potentials for particles other than ¢
and j. Such a situation is not desirable from a physical
point of view. This is a new complication which occurs
for multichannel scattering with long range potentials
when m > 2. It does not occur in previous work on the
subject. We will prove

i

Theorem 2.1: Consider a scattering system defined
by (2. 1) with the interparticle potentials V,; satisfying
(2.2)—(2.11). Then, for each cluster decomposition D
={C,,...,C,}, n=2, the limits in (2.19) exist and
define the operators Q3 as isometries on the Hilbert
space L2(R*Y). These operators satisfy the intertwining
relations

exp(itH) = Qp exp(itH,), - <t<w, (2.21)

Let o denote a channel consistent'® with the decom-
position D, i.e., such that each bound state fragment
of a belongs to some cluster of D. Then the wave opera-
tors 2% are defined as the respective restrictions of
Q3 to the subspace of channel states H,, i.e., all
vectors of /= L%(R*) of the form

n
Gu=fXKy, . K) Ty, (2.22)
i=

where fe L*(R°") and Y, denotes a bound state eigenfunc-
tion corresponding to the jth fragment. In (2.22) X,
denotes the center of mass coordinate of the jth frag-
ment and, by convention, we set ¢, = 1 if this fragment
is a single particle and call it a simple fragment. A
nonsimple fragment is called composite. We have

Pyoposition 2.1: Impose the assumptions of Theorem
2.1 and let @ and 3 denote distinct channels consistent
with cluster decompositions D, and D,, respectively.
Then, the ranges of €} and Q4(Q7, and Q) are
orthogonal,

The proof of these results will be given in the follow-
ing two sections, Before proceeding with this, however,
we note that various special cases of Theorem 2.1 can
be considered. As one example, sufficient conditions
can be given in order that no iterations are required in
(2.20), i.e., we can take m =1. These special cases
can be easily derived in analogy with the single channel
situation'? once Theorem 2.1 has been proved. A simi-
lar remark also holds for the property of m mentioned
at the beginning of the paragraph following (2.20). We
will therefore concentrate on the proof of the general
results.

3. BEGINNING OF PROOF OF THEOREM 2.1:
ESTIMATES REDUCIBLE TO THOSE OF ALSHOLM

The proof of Theorem 2.1 will occupy us in this sec-
tion and most of the next. In the present section we
isolate those estimates which can be put into a form
whereby Alsholm’s single channel estimates can be
directly applied. Then in Sec. 4 we consider those
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estimates which cannot be treated in this simple way,
and for which the necessary bounds are found in a way
suggested by Alsholm’s approach in single channel
scattering.

By the usual argument involving strong differentiabil-
ity and uniform boundedness, one can verify that it
suffices to prove that for some positive constant ¢,

d
zZ,(t)=|(H-H, - o5 G Mexp(~itHy —iGP ™, |

3.1)

is integrable for —o<{< —¢ and {,< < for all «,
belonging to some dense subset of L2(R%Y), It will be
convenient to choose this subset as that consisting of
all vectors of the form
n
up=fKes oK) T 0(z)) (3.2)
i=
with Fourier transforms ¢, ¢ C7 and where z; denotes
the collection of internal coordinates of the cluster C,.
In (3.2) we take f< S ,(R*), where we denote by SD(Ré")
the set of all fe L%(R®") with f e C2(R®) and f(k,, . . .,
kn) vanishes in an open neighborhood of each of the
sets {k /M, =k /M} (1< r<s<n), where M, and k,_ (1
< y< ) denote respectively the mass and the conjugate
momenta of the center-of-mass coordinates X, of the
cluster C,.

In the derivation of (3.1) one uses the fact that the
functions u;, in (3. 2) satisfy u, e D(H,) and exp(- itH,
- iGP)u, € D(H,)=D(H) by Kato’s result as summarized
in Sec. 2. Here we recall that G’ acts only on the
function f in (3.2) and not on the @,

We will only give the proof of Theorem 2.1 for the
limit { =+ the argument for the limit / ~ — « being
completely analogous.

We suppose for definiteness that the »n clusters of D
consist of v simple ones and p composite ones. Follow-
ing Dollard’s treatment of multichannel scattering for
Coulomb-like potentials,? it is convenient to split (3.1)
into three parts corresponding to (1) interaction between
simple clusters (particles), (2) interaction between
simple and composite clusters, and (3) interaction be-
tween composite clusters. We obtain from (3. 1)

Z (<20 Z§(1), (3.3)

where each summand has the following form:

— Vg
{V“(x,—xj)—vfgj (( e (- )) t
o Me

Z@ Wy =2J

i<y

) (3.4)

vy oty -6

Here, as in (2. 20), the summation extends over all pairs
(z,7) linking different clusters, and C,,C; denote the
clusters linked by ¢ and j. Terms of the form (3. 4) for
different values of a are distinguished by the choice of
simple and/or composite clusters for C; and C; accord-
ing to the discussion preceding (3. 3).
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We first consider the case a=1. It is sufficient to
consider (3.4) for a fixed (but arbitrary) pair of the »
simple particles, say 1 and 2. Call this term Z§),(s).
There will be at most a finite number of such estimates
to obtain the final bound for Z§,”(t). By introducing
center -of-mass and relative coordinates R and y, re-
spectively, for particles 1 and 2 along with the ap-
propriate conjugate momenta, we can write Z5",,(¢) in
the following form:

_V.t )
l [Vlz(y) - sz (_7;1!2— + VGé?l)z(’" 1)]

Z8, ()=

X exp(~ itH,, — G2 ™) Aly) N

b
x ”g R)h(xs’ e xl’ e )xp) I (pj ‘; (3.5)

j=t

where (,, denotes the reduced mass of the two particles
and H,, the unique self-adjoint extension of - A/2py,.
With the conditions (2.2)—(2.11) on the potential V,, and
noting that fe S(R®), where S(R®) denotes the set of all
fe L3(R®) with fe C3(R*\{0}), we can use Alsholm’s
single channel estimates to conclude that (3.5) is in-
tegrable for #,< ¢< with a suitable £,>1.%

For a=2,3 we follow Alsholm’s technique and find by
adding and subtracting a term,

Z(Da)( )<Z(a)/(t)+c(a)(t)’ a=2’3’

where Z{#’(¢) is the same as (3.4) except that the super-
script (m - 1) is replaced by m and

{Vf;j <<_.__z— vxe, _ (= v"cf)) £+ vcg{’,’;m)
Me, ¢4

M
- Vx
— VL c (_ v. )
i (e - ) revate),

Cy MC

¢ ()= 2

i<y

i
(3.6)

Noting that Z*/(¢) (a=2,3) depend upon G‘D"”') but not
upon G‘D"""”, we will hereafter suppress the depen-
dence on m in our discussion of these quantities.

We next consider estimates for Z{3(¢). As was the
case for a=1, it is sufficient to consider estimates for
a fixed pair of clusters C, and C, which are now, how-
ever, taken to be composite. Call this quantity Z;*),(¢).
Suppose that C, consists of particles »+ 1, »+2, ...,
and C, consists of particles 1 +1,1+2, .,w. We will
introduce center-of-mass and relative coordinates along
with the corresponding conjugate momenta for this (w -
- ¥)-body system, leaving the coordinates of the re-
maining N - (w — ) particles invariant. We write

PRHOM {Vlw(x)— L (uvt +VG(D)>}
Tw
xexp(- itH,, - iGP) ) Ax)
X H gRM(x,, . . ., %, X, L, X)O Va2, - -4, )
X 03T pezr - - >V, )n%[ : (3.7
j=3
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+

1+1€5 %y

E w
relajsg {Vu (x+ Z_-\; Y;”)Yk) - Vf’,(x)}

X exp(-itH,, - iG{%),)

tylw
Xf(x)%(y,,*z, coe ’Y1)(p2(y“29 e ,yw)
b4
x| g®n(x,, ..., %5, X, ..., X)I1 g, 3.7)
j=3

where x,R, and y,=x,_, -%, (ic[»+2,1]Y[1+2,w]) de-
note, respectively, the difference of the center-of-mass
vectors of the two clusters, the center-of-mass vector
of the two-cluster system, and the relative (internal)
coordinates of the clusters. In (3.7) we have introduced
the total potential V,, acting between the chosen clusters
C, and C, in accordance with the definition (2.12). The
quantity G:D,’w is given by (2.20) in terms of this
potential.

We have denoted the reduced mass of the two clusters
by u,, and the unique self-adjoint extension of ~ A{/
2u,w by H,,. The scalars {y{#’} have the property | ¥’

<1 and depend only upon the particle masses. In gen-
eral, they have different values for different pairs (i,7).
Also, we have set

YI*I:O (3.8)

in the second term of (3.7). This device permits us to
write the summation over the variables {yk} in a more
compact manner.

Using conditions (2.2)—(2.11) on the potentials V,,
and noting that fe S(R®), we again use Alsholm’s single
channel estimates to conclude that the first term of (3.7)
is integrable for {,< <« with a suitable ¢,> 1, Here
one notes that the above conditions on the V,; imply the
conditions (2.13)—(2.17) on the potential V,, as well as
conditions analogous to (2.5)—(2.9) according to the
discussion following (2.17), and one makes use of the
results noted in Ref. 22,

Estimates for the case a=2 follow as a special case
of the above discussion for a=3. One considers the
situation in which one of the clusters C, or C, is simple
instead of composite. An expression of the general form
of (3.7) is obtained but somewhat simpler in structure.

We will complete the present section by showing that
(3.6) is integrable for #,< ¢ << with an appropriate ¢,
>1. It is clearly sufficient to consider the case for a
given pair of clusters C, and C,. Call this term ¢{&,,(¢).
As in the case of Z“‘"(t) we will only consider q=3,
The necessary bounds for ¢ =2 will then follow as a
special case. By introducing the same coordinates as
before we can write

Vot |
C(3) 1 V +VG(D)(m)) VL( x +VG(D)(m-1))
D, 12 p’lw tylw 1 ulw ;
x flx) ‘g(R)h(xl, cex, X, 000, X)
»
X (pl(yrﬂ: « e 9Y1)(pa(y102’ LIS yyw) HS (pj “ * (3'9)
j=
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For the moment we will assume that each Vi e C*(R%).
It will be shown presently that this involves no loss in
generality. It follows from (2. 15) that this property then
also holds for V},. One easily shows from the mean
value theorem,® (2.15), {2.17), the analog of (2.9) for
the decay exponents defined by (2.17), and the following

estimate (valid for 1< m < M):
| VG D) = VG (p) | < Cl1 + fotmDoran)  (3,10)
that (3.9) is integrable for ¢, <7<, Here p={(p,,p,,ps)

denote the respective conjugate momenta of the varia-
bles x=(x,, x,,x,) used in (3. 7).

One can establish (3.10) as Alsholm did for a similar
estimate in Lemma 6 of Ref. 12, showing in the process
that these estimates are valid for p< K with K any
compact subset of R® ~ {0} and the positive constants C,
and f;, depend on K, These restrictions suffice for our
purposes (as they also did for Alsholm) because f in
(3.9) denotes any element of S(R®), Following Alsholm,
we use the estimates (3.10) under the stipulation that
no positive integral linear combination of the a,(ij) is
equal to unity. It can be shown that this involves no loss
in generality. In particular, we can assume that 0
< a,(i)< 1. Naturally, similar remarks hold for the a,
defined by (2.17). In the derivation of (3.10) one also
uses the condition 8(2)= 0 which Alsholm has shown
follows from (2.6) and (2. 7).

We must now show that it is permissible to take each
Vi;€ C*(R%).* The proof involves the same basic ideas
as in single channel scattering,®*** but the argument
becomes more involved due to the more complicated
kinematical structure of the multichannel situation.
Consider a fixed pair (¢,j). For a potential V,, satisfying
(2.2)—(2. 4) with decay exponents satisfying (2,5)—
(2.11) one defines the convolution VI, = w* V",, where
we CF(RY, w20, [lwlyigs,=1, and sets V=V + VL
- VE.

Then, V,, =V} + V%, is also a decomposition of the
potential V mto short and long range parts, respec-
tively, satisfying (2.3) and (2. 4) with decay exponents
satisfying (2.5)—(2.11). One has VL € C*(R®), Defining
operators G by (2.20) in terms of the Vi;, one
easily shows that if the strong limits

s-lim exp(itH) exp(- itH, — iG'P’ ‘™)

totoo
exist, then the limits (2. 19) exist provided that the
following strong limits also exist:

G&: s-lim exp[i(GiD)(m) _ GgD)(m))].
tot

In order to prove the existence of the latter limits it
suffices to show that

,Z{V

i<

is integrable for —w <¢< -¢, and ;<1< with some
ty> 1 for all u, of the form (3.2) with f€ § ,(R*"). Since
the summation in (3.11) runs over all pairs (¢,5) con-
necting different clusters, we can restrict ourselves
to a fixed pair and consider the three cases of the dis-

c °; +VG§,’Di)j(m-l)) VL (tyc ¢, + 9GP )(m-l))}u H

{3.11)
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cussion preceding (3.3), as we have done for the pre-
vious estimates in this section, For a=1 the estimates
are reduced to those involving potentials for a single
pair of particles, say (1,2). The required integrability
then follows from a result of Alsholm.?® For a=3 we
have a similar type of estimate except that the potentials
are VX and V% , such as occur in (3.7). Here we have
defmed VL in terms of the VL as in (2.15), The re-
quired 1ntegrab1hty for this case again follows from
Alsholm’s estimates® if we note, as we previously did
in the case of (3.7), that the conditions (2.4)—(2.11) on
the V7, imply (2.15) and (2.17) and also conditions on
Ve analogous to (2.5)—(2.9). A similar argument
apphes to the VLJ and VE . The integrability for a=2
follows as a special case of the argument for a=3.

This completes the proof of existence of the operators
G

2°

4. CONCLUSION OF PROOF OF THEOREM 2.1:
PROOF OF PROPOSITION 2.1

We now have to consider estimates for the following
norm which occurs in the second term of (3, 7):

WD(t)-_— E {Vij(X+E yl(’ij)yb) _ Vlizj(x)}exp(—iY)f(X)XD“ s
Teish b2
(4.1)
where we have set Y=Y{» =H, + G'®} and
XD:¢1(Y,+2, ... ,Y;)@z(yhz, “ e . ,yw)- (4.2)

The norm (4.1) is appropriate for the case a=3 but,
as we have noted in Sec. 3, the corresponding object
for a=2 can be obtained as a special case. Using the
decompositions (2.2), we write

W, ()< WS(#)+ Wit (1),
where
Wity = Z X+E Y1y Yexp(- i) AR)X, 4.3)
relsie]
fors) <
and
WE(t) = 2 ){VL (x+227“'” y,) — V¥ (x)}exp(—zY)f(x)xD .
relsisy
isi<w

(4.4)

Estimates for (4.4) will be considered first. Using the
result proved at the end of Sec. 3 that we can take each
V1, € C*(R®) and the mean value theorem, we write,

WE@)<C 2 Wp ()

r+lsjsy

141sj<y
where
D “(1 U 1 + IX+ e Z; V(“ Y |)-1-a (“)EXp(— ZY)](X)Z[)D
4.5)
with
U =20 |9, X (4.6)
p=2
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Here we have used the estimate (2. 4) for the potential
gradients, and the parameter 6< (0, 1) comes from our
application of the mean value theorem. *

We write the following operator identity which is
obtained by Alsholm’s technique,?+™

(x+ sz: %, 10y,) pexp(-iY)
b=2 w
:exp(—iY)[tQ(‘p|)+<x+QbZ:/ZV;”)Yb)'P] 4.7

This identity is derived in the momentum representa-
tion using x;=149/3p; (j=1,2,3). We have also used the
fact that each component of each y, commutes with each
component of p and have defined

Q=Q(p))=|p|"/n,,+ ([p|/DDG,.

This latter quantity is the same as a similar one used
by Alsholm'?+'* in the single channel case except for a
trivial change involving the reduced mass of the clus-
ters, so that we will be able to take over his estimates
involving @ to the multichannel case. The operator D in
(4. 8) is defined by!?:14

(4.8)

i} ~

Dy=7" TpT % when u =u(x),

(4.9)

Dy when v =v(p),

a0
T olpt 7’
where 7 means Fourier transform.

Since by our assumptions VI,'w satisfies Alsholm’s
conditions with regard to the decay exponents, we can
take over the following estimates:

VkDGi?l)ugm)(p)l < CK(l + tl'B(k*l))

for k20, k+m~1<M, (4.10)

which are subject to the same restrictions concerning
the momenta p and the decay exponents as was
discussed in connection with (3.10).

From (4. 8) and (4. 10) we conclude with Alsholm that
@ '(Ipl) exists for |pl #0 for sufficiently large |#| since
B(l)=a,>0,

In order to obtain bounds for each norm (4.5), we will
‘use (4.7) and an interpolation theorem of Alsholm?®
which states that if B is a positive self-adjoint operator
(not necessarily bounded) on a Hilbert space, then for
any uc D(B) and 0sps1,

“B"u“ < “u“l"’HBuH". (4.11)

We will follow a straightforward variant of Alsholm’s
procedure and consider estimates for ||4}; exp(- iY)fy,ll,
k>0, with A;; the operator of multiplication by

w
1+ |x+627 ydy, )t
B=2

By applying (4. 7) we obtain

|45 exp(= i Vs || < £ A}, exp(- 7Y D] @A, |

A exp(= )t 0 20 A1y,) D@7 |

< 11| A% exp(= iY) [ p| @Y, | (4.12)
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w
+ 17| A%, exp(= sV (X + 6 20 ¥{#90y,) e pQ Yy, || . (4.13)
p=2
In particular, we find from (4, 13), with £=0,

A, exp(= i), | < £ |p| @Yy | + £ =P Fup |

S PIRAL N L B (4.14)
b=2
Using the bounds!?
| VEQ-1(|p])| < Cp(1 + f=80k+1) (4.15)

for k20, m+k-1<M, andpec X, {>{, for any compact
subset X of R* - {0}, we find in a similar manner as
Alsholm,

Ix 0@ Ao < Cill7l + [ D7D 4o ],
for K =suppf.

(4.16)

To obtain an estimate for the last norm in (4.14), we
follow a similar procedure as was used to derive (4. 16).
That is, we use the representation y,,=i(3/3q,,)(b
c[2,1]ult+2,w], =1,2,3) where ¢, denotes the con-
jugate momentum to y,, and obtain, taking into account
(3.8),

|25, vem | < 01t 5 10,000,

-

K =suppf. Here we have used the commutativity prop-
erty mentioned following (4.7) and have defined the
operators D, in terms of the derivatives® 7/31q,! com-
pletely analogously to the definition of the operator D
in (4.9). The final estimate for (4.14) now becomes

”An‘ exp(-1Y)fY, || < CKtnl[(”f” + oD 45 |

(4.17)

for t= ¢, where K=suppf. We will prove the following
inequality:

R¥q w
145 exp(=a¥)fdy || < C (1 + e-ierasd) | 7| 20 2 | Dy |
a=0 p=2

“ 1A Z 2ol

ktq=l w

w22 D30, 4.18)

for t= 1y, K=suppf, ¥20, g2 0, k+q+m—-1<M, and
fe S(R%). ¢, is of course defined by (4.6). The con-
stant C depends on w as well as on the support of }
The numbers 8(k) are defined by (2.10) and (2.11) in
terms of the decay exponents of Vfw, which have a
definition of the form (2.17).

Following the ideas of Alsholm’s proof of an analogous
result in the single channel case, we will prove (4.18)
by induction in 2 and ¢. For k=0, (4, 18) obviously
holds for all ¢= 0 withg+m ~1< M, and for k=1,
(4.17) shows that (4.18) holds for g=10.2® Assume that,
for some k> 0, (4.18) holds for all ¢> 0 such that k+¢
+m —1< M. We shall prove (4. 18) with % replaced by
k+1andfor allg>0 such that 2+qg+m< M.

By using (4.18) with ¢ =0 for the terms on the right
side of (4.13) one shows that (4. 18) holds with 4 =0
and % replaced by 2+ 1. In deriving this result we make
use of the following inequalities
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D% p] @7 < C L1+ e2=b) | £l + || D27 ] (4.19)

104 - p@-r|| < C(l@ + £2®) || 7] + | Dri| ] (4. 20)
g+l K= suppf,

1 D%mdn [l < CZ | 075 |, (4.21)

which are easily obtained where, in the cases of (4.19)
and (4. 20), we use (4.15) and the following interpolation
inequality of Alsholm:

A+ 5B [Dw || < [+ 129 D) || + | DI || (4.22)

valid for £ {,, with K= suppw, w< S(R®). We emphasize
that (4. 22) has only been applied to norms involving f
and its derlvatlves and not to the function y, or its de-
rivatives,?

Now we use induction in g and assert that (4. 18) holds
with k& replaced by 2 +1 and ¢ replaced by ¢+ 1. The
truth of this assertion follows from using (4.12) with the
first term on the right side estimated by (4.18) with ¢
replaced by ¢ + 1, and the remaining term estimated by
{4.18) with £ replaced by £+ 1. In deriving this result
we have again used (4.19)—(4. 21) as well as the inter-
polation inequalities (4.22) and the following inequality
of Alsholm:

| Dwl|| < Cl||w] + t7e=o=2| De*e*2 | ]

for t=t,, K=supp uj, weS(R?). This completes the
proof of (4.18).

We can now obtain the required estimate for (4, 5)by
using (4. 18) along with (4. 11) wherein the operator B is
taken as A}, in (4.18) and we set kp =1+ a,(j). It
is then seen that, since we have taken 0< a,(3j) <1, it
suffices to have £= 2 in order that p<1, In particular,
for =2 we obtain

L
W5 1

(7] + | pesg] presaconse

2w

«(5 55 gy e,
a=0 p=2

()€ Cptrtmea G0 | o822y ieayciin /2

(4.23)

where we have used the fact that there exists ag=0
such that'?

g+ 8g+3)>0.
Since a,(ij)> 0, it follows that
for all fe S(R®) and ¢ > t,, K =suppf, subject to the con-
ditions that D2y, (0<a<g+2, be [2,1]V[1 +2,w]) exist
and are square integrable over the appropriate space.
Subject to these conditions, the required integrability of
WE(t) immediately follows.

(4.24)
Wi ;(8) is integrable

To obtain an estimate for (4.3), we use the bounds
(2.3) to write

wSi<Cc 2 w§ .0,

relsis<]

1+lgg =<y
where
ws 0=+ |x+2 Y0y, | )99 exp(- iV )fxp || -
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(4.25)

It is seen that (4, 25) is of the same form as (4.5) with
@, (éj) replaced by €(j) and 3, replaced by x,. In view of
the conditions on e(ij) noted after (2. 3), it is clear that
the same method applies as in our analysis of (4.5). We
obtain a bound of the form (4. 23) with «,(ij) replaced by
e(i) and §;, replaced by x, so that (4.25) is indeed in-
tegrable for all fe S(R®) for ¢= i, K =suppf, subject,
of course, to the conditions stated after (4.24) wherein
Pp is replaced by x,. With this stipulation, the required
integrability condition for W5(#) immediately follows.

In order to show that the stated conditions on the
functions x;, and i, are indeed satisfied, we note that,
by the definition of the functions S U stated after (3.2),
we have ¢, € C5(R*-U*Ply gnd @, e C2 (R w-(*D1) Thus,
in particular, ¢, SRy and ¢, e S{R3w-0+D1)
where § denotes the space of C* functions of rapid de-
crease at infinity of Schwartz. It immediately follows
that Dix, and D4y, (0<a<gq+2, be[2,1]V[1+2,w))
exist and are square integrable over the appropriate
space.

With the existence of the limits (2. 19) now estab-
lished, the fact that Q7 are isometries follows from
their being strong limits of unitary operators.

In order to establish the intertwining relations (2.21),
we first note that the long range part of the effective
potential which appears in G{?°, as defined in (2.20a),
consists of a sum of potentials of the form {2.15) each
with a set of decay exponents {a,, 0<% < M} with a,
defined by (2.17), We write

(DY(m) DYm) __
Gt*s _Gt "

Z} (G

(D)Y(m)
t+s,C C -G )

e, (4.26)

‘l

where the summation runs over all distinct clusters as
indicated in (2.20a). For each pair of clusters (C,,C,)
we can now introduce a momentum variable p={(p,,p,,
ps), each component of which is conjugate to the cor-
responding component of a coordinate variable of the
type of x=(x,,x,,%,) used in (3.7). Then we find that

Gi2\&)e, 0) - G 2 (p) ~ 0, L<ms<M,
as t ~+ o for —o < g< and p belonging to any compact
subset of R3 - {0}. Since there are only a finite number
of terms in the summation in (4.26), it follows that

s-lim expli(GE) ™ — GPVm)]=

et ®

for 1s m <M and —« < g <, The intertwining relations
are now easily established from this result and a stan-
dard construction. This concludes the proof of Theorem
2.1.

In order to prove Proposition 2,1, we first define the
wave operators Q%, for a channel a consistent with a
given cluster decomposition D, as the respective re-
strictions of §% to the subspace of channel states (2.22),
as previously noted in Sec. 2. We will conclude the
paper by proving that the ranges of €}, and ; are or-
thogonal for distinct channels ¢ and 8. The proof for
Q,, and Qj is similar,
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The simplest method of proof seems to be to show
that

s-lim-i exp(-iGP)h=0

4,27)
ioee A1 (

for all % belonging to a dense subset of // «» in which a
is a channel consistent with D, A condition similar to
(4.27) has been discussed by Amrein, Georgescu, and
Martin,® in their postulational approach to multichannel
scattering, who show that their condition coupled with
certain well-known properties of the channel Hamil-
tonians is sufficient to establish the desired orthogonal-
ity. By following their argument, one easily shows that
orthogonality also follows if their condition is replaced
by (4.27).

Returning to the description of an arbitrary cluster
decomposition given following (3.2), we will prove
(4.27) for all k of the form (2. 22) with fe S,(R®*"), where
a denotes a channel consistent with the decomposition
D. Noting that

(4.28)

(for t= ty, where K denotes any compact subset of R?

—{0}) which follows from an inequality of Alsholm, we
use the momentum representation to see that the argu-
ment of each V’;j in (2.20b) is an increasing function of

|VGP m-D(p)| < C (1 +8V), 1<m< M,

¢ since we may assume that each «,(7j) is less than unity,

By splitting the quantity {|(d/d¢) exp(-iG P ™)p]| into
three cases, as was done earlier in the proof of exis-
tence of the operators Q;, and using (2.20) and (4. 28)
coupled with the estimate (2.4) for 2=0 and (2.5), one
easily verifies that (4.27) holds for all % of the stated
type. This completes the proof of Proposition 2.1,

We note from the proof of Theorem 2.1, in particular
the discussion centering around the operators G,, that
Q}, are generally not unique. This leads to nonunique
wave operators 3, as we have indicated in the
paragraph following (2.17).

After the present paper was written, the author re-
ceived a preprint* in which a theory of multichannel
scattering by time-dependent potentials is developed by
a generalization of the approach of Ref. 15.
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The spectral theory associated with two-dimensional linear partial difference operators of the second order
on the pseudo-Hilbert space originated by Berezanskii is studied. The present discussion, partly in
Govindaraju’s style, is essentially based on the Kodaira’s method.

1. INTRODUCTION

In the investigation of spectral properties of two- or
three-dimensional harmonic lattices in the nearest
neighbor interaction approximation, Asahi’ has pro-
posed a method in which partial difference systems of
the second order are reduced to ordinary ones by using
a matrix whose elements are operators. But the sys-
tem considered by Asahi is restricted finitely in the
¥ direction and extended infinitely in the x direction; the
present author intends to make the theory complete by
extending it to the system infinitely spreaded in both
directions in the case of bounded operators.

On the other hand, Berezanskii® has constructed a
pseudo-Hilbert space in order to treat the operator-
coefficient difference equations with application to the
system of partial difference operators of the second
order. Since Berezanskii has performed the proof of
spectral expansion theory by using orthonormal opera-
tor-valued polynomials, the present author intends,
therefore, to develop the spectral theory of partial
difference operators of the second order in the x direc-
tion and of any even order in the v direction, in a
manner different from Berezanskii. Namely, the meth-
ods the present article depends on are those of
Kodaira’s®*~® and Govindaraju’s” types, but using the
pseudo-Hilbert space of Berezanskii.

This article, partly reported,8 is composed of two
parts: Part I is devoted to the investigation of algebraic
structure of partial difference operator of second order
in the x direction, the results of which are summarized
in classification of operators, In Part II we study the
spectral expansion theory. The application of the spec-
tral theory to physical systems, two-dimensional lat-
tice crystals, will be discussed later.

PART |
2. DIFFERENCE EXPRESSION
We consider an ordinary linear formally self-adjoint
difference expression of order two with operator coeffi-
cients given by
(Lu)(x) = @ Mx) P (x) ulx +1) +Py(0) ulx)

+P(x =1)ulx ~1)}, 2.1)

where x denotes an integer, which runs through a sub-
set D of Z, the set of all integers, and @(x), P,(x), and
Po(x) are all bounded Hermitian operators on a Hilbert
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space H. We also assume that @(x) and P,(x) are posi-
tive-definite for all x€ D; i.e., the inner product
(Q(x)v,v), and (P (x)v,v), are positive for every non-
zero element » belonging to H. Since the inverse of
Q(x) exists for all x€D, (Q(x)v,v), =0 implies that
»=0 for all x& D, which condition holds also for P (x).

Although u(x) appeared in Eq. (2.1) is supposed as an
element of H, we treat in what follows the corresponding
difference equation for the operator Ulx) from H into H,
given by

(LUYx)=Q () {P,(x) Ulx +1) + Py(x) Ulx)

+P(x-1) U(x = 1)}, (2.2)

where x belongs to D.

By L(H,, H,) we denote a set of all bounded linear
operators from a Hilbert space H, into a Hilbert space
H,. Let us define an operator L & L(H,H) by (LU)x)
=L,U(x). Then, the operator L corresponds one-to-one
to a sequence (--+,L_, L ., ---) which belongs to a
space ¥4, ¢ L(H,H), where a and b (a <b) stand for the
boundary points, being allowed to be a=—« and b= +w.
By putting H'=%°_ 9 H as in Berezanskii, we can sup-
pose L belongs to a Hilbert space Hy=L(H,H’). The
construction of a Hilbert space H; is discussed on the
Appendix.

3. THE DIFFERENCIAN AND THE LAGRANGE'S
FORMULA

We introduce a product for the operators in H defined
by

(A, B) ,(x) =A*(x) @(x) B(x). (3.1)

Since P,(x), Py(x), and Q(x) are assumed to be Hermi-
tian, it then holds that

(LU, V) (%) ={U, LV, (x)=[U, V](x) = [U, V](x = 1),
(3.2)

where we have put

(U, V](x) = U*(x +1) P(x)V(x) = U*{(x) P,{x) V(x +1),
(3.3)

which we call the differencian associated with the
operator L. Furthermore, we introduce a symbol for
summation given by
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2 -e., forz>y+l,
xey+l
§:. .. ax= 0, for z=1y,

., fory=z+l.

Then it follows from Eq. (3.2) that
S:{(LU, V) 4(x) ~(U,LV) y()}ax=[U, V](2) - (U, V] (9),
(3.4)
which is called the Lagrange’s formula.

For later convenience, we give another expression
for the differencian:

[U, V](x) = (W*[U|BW[V]) (x), (3.5)
where we have put
B(x) = 0 ~P0) and W[V]= vix)
P,(x) 0 Vix +1)
(3.6)

It is easily seen that the differencian has the following
properties:

(U+V,X](X)=[U, X]|{x) +[V, X] (x),

(U, VI* ()= =V, U (x). (3.7)
4. SOME RESULTS FROM THE LAGRANGE'S
FORMULA

Let E, be the unity operator in #, and denote by I for
each complex number [ the operator /E,, of which the
main property we use is the commutativity to any
operators in H.

If U(x) and V(x) satisfy the equations (LU)(x,!)
= Ulx, 1) and (LV)(x, m)= V(x, m)¥ respectively, then
we obtain from the Lagrange’s formula {(3.4) an expres-~
sion (I =m) SE(U, V), (x) ax=[U, V](z) - [U, V](y), where
we have used the property I* =/E,. If the operator
U(x) can be considered as a function of complex number
1, Ulx)=U(x,1), then we can define a complex conjugate
operator Ulx,l} of U{x,1) by {ix,?)=U(x,I). Further-
more, we define for the operator L in L(H,H’) the com~
plex conjugate by

(LU)x) = [@Ux) [ {P¥(x) Ulx +1) + P x) Ulx)

+PHx-1)Ux-1)} (4.1)

Then, from the assumption of Hermicity of Q(x), Py(x),
and Po(x) for all xe€D, we have L =L, which gives the
relation (L U)(x,1) = Ulx, [)i*.

It holds from the Lagrange’s formula that 0=(7 =1)
xXS2(U, U (x)ax=[U,U}(2) ~[U, Ul(y), which implies
that, for U(x,!) satisfying the equation (LU)x,!)
=Ux,1)i, the differencian [U, U](x) does not depend on
x. In such cases we write [U, U] instead of [U, T)(x).

By putting V=1U and consequently m =1, in other
words, when V(x,m) satisfies the same equation for
U(x,1), the Lagrange’s formula is reduced to

-2 Im() 82U, Oy y(x)ax=[U, Ul2) - [U, Ul(y), (4.2)
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which we call the Green’s formula.

By the way we define the (vanspose of U by

Ut(x, 1) = U*(x,1),
(U(x, 1w, V), = (v, Ulx, 1)0) 4. (4.3)

5. A CANONICAL SYSTEM OF FUNDAMENTAL
SOLUTIONS

By the canonical system of fundamental solutions of

the equation
(LUNx,1)=Ulx, 1), xeD, (5.1)

we mean the set of solutions S;(x,7) and S,(x,!) satisfying
the following three conditions simultaneously:

[Sj(l), sk(l)]zejhEH jrk=1,2, (5.2),
Sj(x,Z)st(x,l)’ i=1,2, (5.2),
and
S,(x,7), j=1,2, are integral functions of 7, (5.2),
where the matrix [e,] is given by
0 -1
[ejk]: . (5.3)
1 0

We can prove the existence of such a system of solu-
tions by using the transfer-matrix method: We write
Eq. (5.1) in a matrix form

WU (x) = T(x) - W[U)(x - 1), (5.4)
where we have put
T(X) = 0 E”A .
-P{x) P(x=1) P (x){Q) - Pyx)}
(5.5)

Successive applications of Eq. (5.4) give us the relation
WU)(x) =(T(x) -+« T(c +1)) - W[U](c), from which we have

U(x):(T(x)° -+ T(c +1»11 Ulc) +(T(x) - -+ T(c +1))12 Ule +1),
(5.86)

where ¢ is a fixed integer contained in D.

Since {U(c), Ul¢c +1)) is a two-dimensional vector, we
have two independent solutions of Eq. (5.1) by con-
structing two suitable independent vectors as
(U(c), U(c +1)). Now we proceed to construct such two
vectors: First, solving the eigenvalue problem B(x)¥
=1Y, we have two eigenvalues A, =iP;(x) (= - 2,) with
the corresponding normalized eigenvectors Y, and Y,
given by

1 fiE, 1 (—3E

Y‘_\/'_f_(E,, ) and YZ_TZ ( EHH).

We introduce real (Hermitian-operator-component)

vectors W, and V, by putting ¥, =(1/V2)W, +iV})

xexp{—iB), Abeing any given real number. Then W, and

V, are expressed in the form
—sing cosf

E, and V,= E,.

sinf

W, =
cosfB
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Let us put

-1/VP{x) 0 |
D(X):(Wu Vl) 0 \/?_(x—)

sinB cosp

— -1/2
—cosB sing P ).

Then it is easily seen that

0 -1
D'(x) B(x) D(x) = E,.
1 0
If we choose Sfc)=e"’ and S,(c +1)=e", j=1,2, as
eio) eéo)
=D(c),
F;U (,él)
and put
Sj(x’ I) = (T(x) e T(C +1))11 e;O) +(T(x) “eo T(C +1»12 e;l)’

(5.7)

then the condition (5.2), is satisfied, and furthermore
S,(c) and S,(c +1), j=1,2, are Hermitian. Since the
domain and range of P,(c) is the whole space H, we see
from the construction of the operators S,(x,1), j=1,2,
that S;(x,!) has domain and the range H for j=1,2, for
all xeD.

Conditions (5.2), and (5. 2); are easily verified to be
satisfied by the operators given by Eq. (5.7).

1t is easily shown from the Lagrange’s formula that
the following formula holds:

~2i{Im(7) $2¢S,(0), S, (1)) x(x)ax
- [S](I), Sk(l)](z) "EjkEHy
where we have used the relations (5.2),.

6. SOME RELATIONS FROM THE GREEN'S
FORMULA

For later use we develop some formulae related to
the Green’s formula. First of all, it is easily seen that,
for any A ¢ H,

(S2(S,(D), SN plx)ax A, Ay
=S(Q(0)S,(x,1)A, S(x, A, S(x, 1) A); Ax.

(5.8)

(6.1)
Since the operator @(x) is positive-definite, we see the
operator S%S;(1), S,{1)) 4(x) Ax is also positive-definite
for z= ¢ +1. Hence it turns out that, for Im(/)#0, the
operator [-2¢Im(1)]"' [S(1), S,(D)](2), j=1,2, is also
positive -definite:

- [1/2im@1[S,(1),S,D]{z) >0, j=1,2,
and it is easily shown that this operator is Hermitian.

Next we derive some useful relations in later sec-
tions. For brevity we introduce some notations:

Si{x, 1)
F(x,1)=W[S,(N(x) = Six+1.0))
Sylx, 1)
H(x, 1) = W[S,(1)] (x) = , (6.2)
Sylx +1,1)
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Sy(x, D) Sylx, 1)
K(x,1) = (FH)(x,1) =

Si(x+1,1) Sfx+1,7)
Then the relation (5.2), is expressed in the form
(K*BK) (x,l)=J or (K'BK)(x,)=J,

where J=[¢,, E,|. It holds that (K*BK)(x,1)
=(K*BKK'K)(x,1) =J(K™")(x,1), so that [(K*BK)J"|(x,1)
=J(KK)(x,1)J™, which provides the relation
[(K*BK)J ' (K*BK)](x,1)=J. Since J ' =J, we obtain

[(K*BK) J(K'BK)|(x,1) = = J. (6.4)

(6.3)

From the identity

(F*BF) (F*BH)
(x, 1),

(H*BH)

(K*BK) (x,1) =
(H*BF)

Eq. (6.4) is reduced to

((F*BH)(F'BF)|(x,1) - (F*BF)H'BF)|(x,1)=0,
(6.5),
[(F*BH)(F*BH)(x,1) - [(F*BF)(H'BH)|(x,1) = E,

(6.5),

[(H*BH)(F'BF)|(x,1) - ((H*BF)(H'BF)|(x,1) = ~ E,,

(6.5),
((F*BH)F'BH)|(x,1) - [((H*BF)H'BH)](x,1)=0.
(6.5),
Now we can prove the following relation:
(F*BF)x,1) +(H'BH)(x,1)
= [(F*BH)H*BH)™ (H*BF)|(x,1). (6.6)

Since (H*BH)(x, 1) has its inverse by the property that
(H*BH)(x,1) = = [2i Im(I)] 1 [S,(1), S,(1)] (x) >0 for all
Im(/)#0, we have, from Eq. (6.5),, (F*BH)(x,1)
=[(H*BH)™ (H*BF)(H'BH)](x,1), so that it holds that
[(F*BH)(F'BH))(x,1) = [(F*BH)(H*BH)™ (H* BF)}H'BH)|
x(x,1). Using Eq. (6.5),, we obtain [(F*BH)H'BH)](x,1)
+E,=[(F*BH)(H*BH)* (H*BF)(H'BH)](x,1), from which
we have Eq. (6.6).

7. RADIUS OPERATOR

Since the operator ~ [2iIm(l)]™ [S,(D), S,(1)](x) is
positive-definite, we define the operator R(x,!I) by

R(x,1) = —{[S,(1), S;(D] ()},

which we call the vadius operator. This operator is
easily found to be Hermitain and has the property

(7.1)

>0, for Im(l) >0,

R(x,1) (7.2)

<0, for Im{) <0.

By making use of the Green’s formula, we can express
this radius operator in the form

R(x,1) =[1/2Im()]{S (S (1), S, 4(x) Ax}™.

We see that the operator P(z,1) =S 5,(1), S,{I)) z(x) Ax
is nonnegative and nondecreasing:

0<Plc,l)sPlc+1,l)s+--sP(z,])s+--,

(7.3)

(7.4)

Masahisa Fukushima 1066



because of the following relation, for 2>y +1,
((P(z,1) - P(y,IN A, A),
=87, (Q(x)Sxx,1)A, Sy(x,1)A), Ax> 0.

y+1

Furthermore, we can state the following:

Lemma 1.1 The operator P(x,l) defined above is
strictly increasing at step 2 in the sense of positive-
definiteness. Here by strictly increasing at step n we
mean the property of a sequence {A(x)} to satisfy an in-
equality A{x +n)= A(x) for all x.//

Proof: If there exists x such that P(x,l)=P(x +1,1)
=P(x +2,1), then we have, for any given Ac H,
((P(x +1,1) ~P(x,I) A, A), =0 and ((P(x +2,1)
~P(x+1,I))A, A), =0, from which it follows, by using
the transfer matrix method, that S,(v,!) is identically
zero for vy = x and also identically zero for y <x. Since
the identically zero solution for S,(x,l) is excluded in
our consideration by the condition (5.2),, the operator
P(x,1) must increase strictly at step 2, which proves
the lemma. //

Next we consider the convergence of the operator
R(x,1) as x— b, To this end we prove the following:

Lemma T7.2: Let A and B be Hermitian and positive-
definite operators in the Hilbert space H. If A and B
satisfy the relation 0 <A < B, then it follows that
At=B1>0.//

Proof: Since A is an Hermitian and positive -definite
operator in H, there exists its inverse, which is also
Hermitian and positive-definite. Hence there exists a
unique Hermitian and positive-definite operator A™/2,
by making use of which we define an Hermitian and
positive-definite operator '=A"1/2BA™'/2, Hence the
relations B~A 20 and E, =A™ /2AAY/? jmply that
T -E,>0, since A™/? maps H onto H.

Now we derive the positive-definiteness of E, ~T'"\.
Since I" — E, is positive-definite, it follows that, for
any ve H,

0< (T —Ey v, v}, =(T" %, TV %), - (v,n),
=T 2|12 — ||oll5.

If we put «=T"/%, then we have |lull% — [IT""!/24]|2 = 0,
which implies the relation ((E, — T ™)u,%), > 0. Since u
ranges over the whole H as v runs over H, we obtain
E,-T7'20,

Since it holds that E, = (A" /2 A A Y/2) 1 =424 41/2
and I =(A/2BA Y2 1oAY 2B 14Y2 we arrive at the
relation 0<E, -T*=AY2%A4" -~ B™)AY?, which implies
that, for any ve H, (A7 ~B™)AY29,AY24)> 0, Since
the range of A'/* is the whole H, we finally have

A"'=B™>0. Thus the lemma is proved. QED

Since there exists, from the Lemma 7.1, a sequence
of numbers, c¢=c, <c; <+-+, such that 0 <P{c,,1)

<P(c,,I) <-++, it holds from the Lemma 7.2 that
R(cy,1) >R(cy,1) > ++ >0, for Im(l) >0,
R(c,,1) <R(cy,1) <++- <0, for Im(!) <O. (7.5)

Therefore, we can see that R(x,l) converges to an
Hermitian operator R,(I) as x— b in the strong operator
topology, by using the following:
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Theorem T7.1: If a sequence of Hermitian operators,
Ay, A,,... in H, is monotone-increasing (or decreasing)
and has upper (or lower) bound, then the sequence con-
verges to an Hermitain operator in the strong operator
topology. //

We omit the proof of this theorem, since it is seen in
elementary textbooks of operator analysis.

Remavrk: The property of monotone increase (or
decrease), not strictly monotone property, provides the
proof of convergence of R(x,1) to R,(I). The convergence
of R(x,!) to R,(I) as x tends to a is also proved
similarly.

8. DEFINITION OF BOUNDARY CONDITIONS

A general solution of Eq. (5.1) is expressed in the
form

W(x,1)=8,(x,1)* f, +S,(x, 1) f,. (8.1)

Let x(x) be an Hermitain operator in L(H, H) satisfying
the so-called self-adjoint conditions at a and b:

(8.2)

where a and b (a <b) designate the boundary points. In
what follows f(a) and f(b) represent the operators
s-lim,.,f(x) and s-lim_. , f{x) respectively. We put

s-)lri_rgn[x, x](x)=0, t=qandb,

x(7)
X(t):s-l'lm s
Tt x(r +1)

t=agorb, (8.3)

Now we define the boundary condition at a or b for
¥ by

(8.4)

which is simply rewritten in the form [x,¥](#)=0, {=a
or b.

Since it holds that W[¥](x) = W[S,()](x)f, R
+W[S, (D] (x)f2, Eq. (8.4)is reduced to (X*BF)(¢,1)f,
+(X*BH)(¢t,1)f,=0. If the operator (X*BH)(t,!) has its
inverse, then we get

s-lirtn(X*BW[\If]) (x):O, t=aorb,

fe==2,)f,, t=aorb, (8.5)
where we have put
z,()=-[(x*BH)™ (X*BF)|(t,1), t=aor b. (8.6)

From the linearity of the operator L, scalar multiplica-
tion to ¥ is immaterial, Thus we can put fI =E,, giving
the solution satisfying the boundary condition at ¢ (=a
or b) in the form

¥, (x,1)=8,(x,1) +S,(x,1)Z,(2). 8.7)

To prove the existence of inverse of (X*BH) (b,1), we
deal with the following boundary-value problem
(Govindaraju):

(LY)x, 1) =Y(x, 1}, ¥(x,1)eL(H, H),

(W*[Y|BH)Xc)=0 and (W*[Y]|BX)(b)=0, (8.8)

where X(t) satisfies the self-adjoint condition at z=b:
(X*BX)(t)=0. The general solution of (L ¥)(x,1)= ¥{x,)[
is described as ¥(x,1) =S,(x,1) f, +S,(x,1) f,. Since H(c)
satisfies the condition (H*BH)(c) =0, we can put X{(c)
=H(c). Substituting ¥ into the boundary condition at ¢,
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we have (H*BH)(c)f, +(F*BH)(c)f,=0, which gives the
solution satisfying the boundary condition at ¢ in the
form ¥ (x,1) =S,(x,1) f,. From the fact that ¥ (x,!) satis-
fies the boundary condition at b, we get (H*BX)(b,1)f,
=0. In order that f,#0, (H*BX)(b,1) must be the zero
operator and / is an eigenvalue.

On the other hand, it is well known that this boundary-
value problem has real eigenvalues, so that it holds that
(H*BX)(b,1)# 0 for Im(Z)# 0, which means that
(X*BH)(b,1) has its inverse for Im(/)# 0. The existence
of inverse of (H*BX)(z,!) is shown in a similar way for
Im(/)+0.

9. SOME PROPERTIES OF Z,, (/)
We can easily show the following:

Lemma 9.1: Let x(x) and A(x) be two operators in
L(H,H). Then the relations [x, x}(x)=0 and [x, f](x)=0
imply that [f, fl(x)=0.//

Pyoof: From the relation [x, x](x) =0, we see that the
vector W[x|(x) is orthogonal to the vector (BW[x])(x).
Similarly, from [x, fl(x)=0, it follows that the vector
W[ f](x) is orthogonal to the vector (BW[x|)(x). Hence
the vector W[f](x) is linearly dependent to W[x](x),
namely W[f](x)=aW[x](x}), which provides the relation
[f, filx) = a[x, x|(x) =0. This proves the lemma. //

Now we put
G,(x,1) = W[ ,(1)](x) = F(x,1) +H(x,1)Z,(). (9.1)

From the fact that ¥,(x,!) satisfies the boundary condi-

tion at », one obtains
(X*BG,)(b,1)=0. (9.2)

Since X in Eq. (9.2) does not depend on /, it holds from
Lemma 9.1 that

[6x(1NBG,()](b)=0. (9.3)
If we put /’=1 and [ =/ in Eq. (9.3), we get
Zx() = Z,(0). (9.4)

This is an important property of Z,(1).
Secondly, we see from the Green’s formula that
- 2i Im(1)S2(¥, (1), ¥, (1) (x) Ax
={G*BG,[b,1) - [G¥BG, )¢, 1).
Since the boundary condition at b gives us the relation

(G¥BG,)(b,7)=0 and easy calculation gives us
(G¥BG,)c,1)=Z,(I) - Z,(1), it follows that

S0, (1), ¥ (), (x) Ax = ‘Tr’im Im[2,0))]. (9.5)

This implies that

>0, for Im(l) <0,
Im[Z,(1)] (9.6)

<0, for Im({/) >0,
10. CENTER OPERATOR AND EQUATION OF
CIRCLE
We define a center operator at b, C,(l), by

C,()= - [(H*BH)" (H*BF)|(b,1). (10.1)
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Then the relation

cxil)=cC) (10.2)
is obtained, since we have, from Eq. (6.5),
[(H*BH) ™ MH*BF))(x,1) = [(F'BHYH'BH) | (x,1).
(10.3)

Secondly we construct the equation of the circle: From
the boundary condition at », the following relation holds:
g,(1)=[G¥BG,|(b,1) ={(F* +Z¥H*)B(F +HZ,)|(b,1)=0.

By the definition of the radius operator and Eq. (6.6),
this expression turns out to be g,(1)=(Z,{) - C, () |*
x[iR D [Z,(1) = C ()] =iR,(). If we define a function
of operators by

LA =[A -C,O*R}MDA - C, (D] =R, (D), (10.4)
then Eq. (10.4) gives us that
Fo(Z, () =0. (10.5)

It is seen natural from the form of Eq. (10.4) to give
the name “equation of the circle” to the equation f,(A) =0
for A ¢ L(H,H), with its center C,{(/) and its radius

R(D).

One of properties for the center operator is obtained
as follows: We get from the Green’s formula that

=2 Im{(7) SY[S, () +S.(D) C,(N]* R[S, ()
+8,(1) C{D) (x) dx = —iR,{{) +2{ Im[C (1) |, (10.6)

where we have used the definitions of radius operator
and center operator and Eq. (6.6). Since it holds that
R,(1) <0 for Im({) > 0 and > for Im(l) <0, we have from
Eq. (10.1) that

>0, for Im{l) <0,

Im[C,(7)] (10.7)

<0, for Im(/)>0.
11. CONVERGENCE OF Z, (/}asr = b

Now we examine the limit of Z (/) as 7 goes to b. For
v’ >y +1, we have

-2iIm(l) STW, (1), ¥, (1)) 4(x) Ax
=if AZ, () +2{Im[Z ()],

which gives us the relation

. 1 3
0 <SS, (1), ¥, () ylx) Ax= - TImQ) (z,a).

It then follows that
>0, for Im(/) <O,

£z, (11.1)
<0, for Im()>0.
Similarly, for » >+’ +1, we have
1
0< s,,,(‘l»’y([), W,(Z)}H(v) Ax = z—frn—([;fr,(zr(l» y
from which one obtains
/>0, for Im(7) >0,
FAZ, (1) (11.2)

<0, for Im(!) <0.

By the relation if,(C,(/)) = — iR,(I) obtained in Sec. 10,
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it holds that £,(C,(7)) >0 for Im(!) >0 and <0 for
Im(!) <0.

Now we define the circle at », N, (/), associated with
the operator L by

N,()={A| f,(A) =0, Ac L(H,H)}, (11.3)
and its interior at », M, (), by

M, (1)={A]|f(A) >0, Im()>0, Ac L(H,H)}. (11.4)
Then we see from the discussions in Sec. 7 that

MycM(l), for y>x+1, (11.5)

Since the radius operator R(y,!) tends strongly to an
operator R,(!) as » — b, if R,(l) is a nonzero operator in
H, then the circle tends to a limiting circle N,(I). In
this case Z,(I) depends on the boundary condition at b,
which will be called the limii civcle case. H the limit
radius operator becomes a zero operator, then the
circle at » tends to a point, namely the center operator
C,(D). In this case the operator Z,(I) tends to the opera-
tor C,(7) and does not depend on the boundary condition
at » previously imposed, which is called the limit point
case.

Since the arguments about the other boundary points
a are discussed similarly, we can classify the operator
L as follows:

(i) limit point type at both end points,
(i1) limit point type at g and limit circle type at b,
(iii) limit circle type at ¢ and limit point type at b,
(iv) limit circle type at both end points.
The corresponding classifications of one-dimensional
operators of the second order are seen in Ref. 5.
PART I
12. NULL-PRODUCT OPERATOR

For the purpose of constructing a Green’s function
we introduce the so-called null-product in the following
way: As to two general solutions ¥(x, I; /) =S, (x, Df,
+S,{x, 1) f, and ¥(x, I;2) =S, (x, g, + S,{x, 1)g,, we define
the null product by

Ur el =[¥C. 7 N,¥(, 2] (), (12.1)
which is reduced to
(Lr gl (= (foz -/, 5 E, (12.2)

by using the property of canonical system of fundamen-
tal solutions. We continue to construct the null-product
operator. If we impose the boundary conditions at ¢ and
b,

X*BW[E ) (1)=0, (=a, b, (12.3)
then one obtains a set of two solutions
¥ (x, N=8,(x, ) +S,(x,1) Z,(1), t=a, b, (12.4)

where Z (I) and Z,(l) are determined by, for i=a, b
z,(= -[(X*BH) (X*BF)](1, 1),

s

in the limit circle case at ¢,

Z,() = -[(H*BHY* (H*BF)] (¢, D),

(12.5)
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in the limit point case at ¢.

If we put, for brevity,
EH EH
hl = and h2 = »
Z,() Z, ()
then we get [[&,, h,11(1)= Z,(1) - Z,(1). Now we define the
matrix operator by
(g, ]V g, 1@
Ur, 1@ kg, 1)1 (D

which we call the null-product opevator. If, for sim-
plicity, we put

(12.6)

R {12.7)

Z(D= 2,1} - Z,(1), (12.8)
then it follows that
0 VAU
FO=[ _ (12,9)
Z(1) 0

Since it holds from the definitions of Wlf] and B(x) that
(W[, ] BWIY, D) (x, ) = (W*[¥,] BW[¥,]) (x, 1) =0 and

(w*[w | BWE,]) (x, ) =~ (WH[¥, ] BW[E, D) (x, ) =

aq

Lay, 1)1, we get
(Y*BY)x, )=3(1) and (Y77¥Y*) (x,)=B"(x),
(12.10)
where we have put

W2, D)
Yix, )=
¥, (x+1,1)

¥, (x, 1)

¥, (x+1,1)

Then the relations between elements in Eq. (12.10) are

written down in the forms

(@;j)z‘-xq,;(mxx’ 0~ (@;J‘)Zq\l,:(k))(x’ Iy
ZSgn(j_k)(l_Ojk)Pl-l(x)y jy k=0$15 (12-11)

which will be used to derive some properties of ¢
Green’s function constructed in the following section.
Here we have used a notation ™ (x, I) =¥ (x +n, ).

13. GREEN’'S FUNCTION

The construction of a Green’s function is the key point
for the spectral expansion theorem. We put

¥ (y, Dz Ny ¥ix, 1), fory<x,

Glx,y; )= (13.1)
¥, (y, DZ7H D) ¥il(x, 1), for y>ux,
and, for any A(x)e L(H, H),
Ulx, ) =SXG(x, «;1), A 4(y) Ay, (13.2)

After elementary calculations, taking into account the
concrete forms for G(x, y;1), Eq. (13.1), we arrive at
the relation

(LY (x, D) =1U(x, 1) +A(x). (13.3)
Secondly we define the Green’s operator G(I) by
(GA)(x, D =8XG(x, - ;1),A(-Du(y) Ay, (13.4)

by which Eq. (13.3) is expressed in the form
(L - DG A (x)=A(x). We omit the proof of the relation
[G()(L - DA] (x) =A(x). Now, from these last two for-
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mulas, we can describe the Greer_1’s operator define by
Eq. (13.4) in the form G()=(L -17)"%.

14. OPERATOR MATRIX M(/)

The matrix obtained in this section is directly related
to the spectral expression of operator associated with
L, The Green’s function defined by Eq. (13.1) is ex-
pressed by means of canonical system of fundamental
solutions in the forms

St(x,1)
Glx, 9;1) = (S (v, ), So(v, M)
Hx, 1)
for y< x, (14.1)
where the matrix defined by
Z1) ZMZD)
M) = (14.2)

zz)  zZ,DZD)zZi1)

satisfies the relation M(l) - M*(I) = —J, because Z!(l)
=Z(l)., The expression of G(x, y;1) for y > x is obtained
by putting M¥(I) in Eq. (14.1) instead of M(l).

16. CONSTRUCTION OF A SELF-ADJOINT
OPERATOR FROM L

Consider a subdomain /) of the defining domain of the
operator L given by /) ={U| UcH,,, LUec Ho}, and let T
be the operator obtained from L by restricting its do-
main within /); T=L1/) (or TU=LU if Uc /). Further-
more, let us put 0, ={UIUe/, {x,Ula)=0}, 1,
={Uvivep, [x,U)(b}=0}and Hy=0,ND,. Let T, be an
operator obtained from T by restricting its domain
within /),. Then it is easily proved that T, is symmetric
and self-adjoint. The detail discussions are seen in Ref.
6, though some modifications should be required. We
put /=T, in what follows.

16. CONSTRUCTION OF A SPECTRAL
OPERATOR FUNCTION. |

We treat in this section the operator # instead of L.
As in the case of the Green’s operator of L, the opera-
tor G(I) given by Eq. (13.4) is a resolvent operator of
#—~1. Since # is self-adjoint, we have the spectral de-
composition of # in the form

H=[2xdEQ), EQN)cL(H,,H,y),

where {E(\)} is the resolution of the identity. Let us put
Ulx, )= [E(X) = E(0)|U(x), Ulx, A)=E(A)U(x)=Ulx, )

- Ulx, ) for A= u,r], UcH,, and Ulx, A)=S¥G(x, - ; 1),
V() () 2y =(G()V(A)) (x). Then it follows that, for
m=-1,0,1,

U™(x,1) = Ulx +m,1) =S8 (G"™(x, - ; 1), V(A) 4(v) &y
=(G™(x, 1), V(A .

Since it holds that V(x, &)= [(4# -1)U(A)](x)
=[[,(x =D)dEN)U](x), we obtain

U™ x, 8)=( [ A =DAEMNG ™, - ;1), O .
From Eq. (14.1) we get

(16.1)

(16.2)

G(m )(C, y; l)
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2 2
25 27 Sy, DM, (Def™,  for y<c,
R=1 j=1
={ 2 2 (16.3)
kE ;Z‘; Sy, M ()),; e™, for vy >,
=1Jj=
because Si(c +m)=e"' for m=-1,0,1.
If we put
2
22 S0, DM@y, for y<e,
Ly, 0={" (16.4)
,,Z,lsk(y’l)(M'(l))W’ for y >¢,
then we get
2
G™ (e, y;1) =2 Ty, Dei™, (16.5)
J=1

from which U™'(c, &) in Eq. (16.2) turns out to be

Ue, 8)=3 e [, (= DAEWT (1), D,

where we have used the relation (e!™")* =¢;™ and
e™ e L(H,H).

Secondly putting

£y, &)= [ (X =DAEMNIT,(,1), (16.6)
we obtain

Ume, ) :Z emXE (-, B), U) (16.7)
or setting

Ui(a) =+, 8), U)y (16.8)
we get finally

U("”(C,A):Jil: e Ui(a), (16.9)
17. INTEGRO-DIFFERENCE EQUATION FOR
OBTAINING SPECTRA

We treat in this section the equation
(LU)x, A):fAudU(x, w, (17.1)

which is used to get the spectral expansion formula. It
is easily shown that the expression

Uy(x, &) = fA{f; S,(x, ) dUAw), (17.2)

satisfies Eq. (17.1). We now seek for the solution of
Eq. (17.1) under the initial condition
2
2 emui(a)=U"c, ), m=1,0,~-1. (17.3)
i=1

Putting U(x, &) = U,(x, &) + T(x, &), and substituting it
into Eq. (17.1), we have

(LU)x, A)= [, ndUfx,u) +(LT)x, 8). (17.4)
On the other hand, it holds that (LU)}x, &)
= [ udUyx, u) +J ,udT(x, u), from which we get
(LT)x, &)= [, pudT(x, u). (17.5)

From the relation U™(¢, A) = U (¢, &) + T{c, &) and
Eq. (17.2), we have
2

Ue, 8)= [, 258 (e, VAU =2, e T

Therefore, T‘(x, A) must satisfy the initial condition

T c,A)=0, m=-1,0,1, (17.6)

Masahisa Fukushima 1070



We can easily show that the solution T{x, ) of Eq.
(17.5) under the initial condition (17, 6) is zero opera-
tor, which implies that the solution U(x, A) = Uy(x, 1) is
a unique solution of Eq. (17.1) under the condition
(17.3).

18. CONSTRUCTION OF A SPECTRAL OPERATOR
FUNCTION. Il

As shown in Sec. 17, the solution of Eq. (17.1) under
the initial condition (16.8) is expressed, by using Eq.
(16.7), in the form

0, 8)= [, 2206w, 0), D (18.1)
Since we can put U(x,)x): £,(x,1), we have

64, A)= [, 8,00, md(E, (e, ), ey e (18.2)
Putting

P =(g,(5 ), £, Ay, (18.3)
and therefore, by using Eq. (16.86),

p™(8)= [ |u =12 dB(uIT;(-,1), Tole, D o
we obtain

J2x _z]'def’*(x):<rj(-,z),rk(-,z»,,o. (18.4)

It follows from Eqgs. (16.5) and (5.8) that
KT, TD] == [2:Im(D)]™ [M*IM — (M*)*JM!] (1)
= [2iIm ()] [(KM*)*B(KM*)] (b)
- [24Im (D] [(KM)*B(KM)](a).

The boundary conditions in the forms (G¥BG,)(¢,1) =0
yields [(KM)*B(KM)|(¢)=0, for t=¢ and b, from which
we get

(TAD, T ) g )= = [2d @) [M*IM = (M*)*TM!] (7).

(18.5)
The elementary matrix calculations of right-hand side
of Eq. (18.5) gives us the relation [M*JM — (M!)*JM*|(I)
=M(l) - M(1) = -2 Im[M(1)], where we have used the
property M*(l)=M(l). Consequently, Eq. (18.4) is re-
duced to

S Ix=1]2Im(1) dP(A) = Im[M(2)], (18.6)
where we have put
P =[p%1)]. (18.7)

The inverse formula of Eq. (18.6) is expressed in the
form

P(A):-Er}gﬂ" fOAIm[M(u +€)]du,
and has the properties P(A)> 0 and P*(A)=P()).

(18.8)

19. EXPANSION FORMULA
Since we have from Eqs. (18.2) and (18. 3)
2
Eulx, A):fAjé S;(x, w)dp'*(u), (19.1)

substitution of this formula into Eq. (18.1) provides

U(x, A) = fA é S{x, w)dv,u),

V8= ([, 22 Syl w) ()" @) U ax,

1071 J. Math. Phys., Vol. 17, No. 6, June 1976

or formally, making x —« and g — - in A=] i,2],
2
Ux)=$; 2 I 8%, w)dpti(p)SHy, 1) @) Uly) Ay.
1

(19.2)

APPENDIX: CONSTRUCTION OF A HILBERT
SPACE H,

As to the results in this appendix, reference should
be made to Berezanskii.? Let H be a Hilbert space with
inner product (-, +),, and the norm llull, =(u,u),. Next
we introduce a direct sum of H: H'=3% _,©H, where a
and b may be improper. In this space the inner product
is defined by (0, v),. =32 {«,,v,), and also any uc H'
designates (« - u,,u,.,,,***).

Let L(H,H) be a set of all bounded linear operators
from H into H, which is a vector space under ordinary
addition of operators. If we assume that u, € L(H, H) for
all xe D, and put u=(-+ %%, ), thenuis an
element of a direct sum of L(H,H):uey ® L(H,H). We
define a product of this u and any A € H such that u4
=(++v,u,A,u,, A, ++). Then u becomes a linear opera-
tor from H into H’. Hence we denote by H, the set of all
bounded linear operator from H’ into H’. The operator
L considered in the main text can be regarded as an
operator belonging to H,.

Now we construct a Hilbert space H,. First of all we
define an inner product in H, by

W, V)y,=u*Qv [c L(H,H)], (A1)

where u, V€ H; and @ is a fixed positive-definite opera-~
tor H'— H’, and furthermore we have defined u* as an
operator H' into H by (u*A,B), =(4,uB),., BcH,

A € H’, The inner product defined by Eq. (Al) has the
properties: (4, v +w), =(u,v), +(u, W) g BTV, Wi,
={u, Wy +<v,w>Ho,' (u,vA), :2u,v>,, <A, for A

€ L(H, HS, (uA, Vin, =A%u, vg,,o, and Zu, V) ¥, =V, Wy,
The positive-definiteness of (u,u),,0 is shown by the
relation ((u, W) 4 -7, 2), = (W*Quv, v), =(Quv,uv)y > 0.
Furthermore, the operator (u,w) iy 1S easily shown to
be Hermitian in H,

Now we introduce a topology in H,, which is a strong
operator topology in H';

Definition A.1: A sequence {u‘} in H, converges to
a ucH, if and only if, for any given € >0 and for each
v € H, there exists a positive integer N such that
lu'» —wwll,, <€ for all w>N.//

With respect to this topology, H, becomes complete.
To show this, we define Cauchy sequence in H,:

Definition A.2: A sequence {u""’} in H, is a Cauchy
sequence if and only if, for any given € >0 and for each
v e H, there exists a positive integer N such that
ey —u™ll,, <€ for all n,m >N. //

Then, we easily prove in the usual manner the
following:

Theorvem A.1: The space H, is complete in the sense
that any Cauchy sequence converges. //
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Uniform bounds of the pressures of the r¢% field model
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We show that the pressures of the A3 field model with free and with periodic boundary conditions are

bounded uniformly in space cutoff.

. INTRODUCTION

In this paper we study the partition function Z{a,b,¢)
{ZP(a,b,c)] and the pressure ala,b,c) [aF(a,b,c)] for
the A¢? quantum field theory in a finite box R =aXxbXc
centered at the origin with free (periodic) boundary con-
ditions. The partition function Z(a,b,c) is defined as the
limit of momentum cutoff quantities:

Z(a,b,c)=(exp[- V,(a,b,c)]),

where V, (a,b,c) is the doubly cutoff (momentum cutoff

k and space cutoff 2 =gagXbXc¢) interaction action of the
x¢; field model and (-) stands for the expectation of

the Gaussian measure with mean zero and covariance

(= A+m2)™t, For detailed definitions we refer the reader
to Glimm and Jaffe' and Feldman.? Glimm and Jaffe
have obtained bounds uniform in ¥, of the form:

Z (a,b,c)< (const)be, (1.1)

Feldman?® has shown that Z, (e, b,c) converges as x —1
and thus the bounds apply also to the limit function

Z(a,b,c)=1im Z (a,b,c). (1.2)

k=1
Thus the pressure defined by
ala,b,c)=(abc)'logZ(a,b,c)

is bounded above uniformly in the volume . The cor-
responding quantities Z¥(a,b,c) and & (a, b,c) for
periodic boundary conditions are defined similarly in
terms of the periodic action Vf(a,b,c) with periodic
boundary conditions on 292, see Ref. 3. The periodic
partition function Z¥(a,b,c) also satisfies a bound of
the form (1,1). Finally we will consider the partition
functions Z¥(a, b,c) of the lattice approximation with
periodic boundary conditions defined by Park,? and the
corresponding pressures af(a,b,c). Here 6 denotes the
lattice spacing parameter and as has been shown by
Park,® ZHa,b,c) also satisfies a bound of the form (1.1)
uniformly in 6 and converges to ZF(a,b,c) as § tends to
Zero,

Our principal results for the partition functions are
given in the following theorem.

Theorem 1.1: There are constants d, and d, indepen-
dent of a,b,c,8, such that:

(a) exp(-—d,abc)< Z(a,b,c) s expld,abc),

(b) exp(-d,abc)< ZP(a,b,c) s expld,abc),

{c) exp(-d,abc)< Z8(a,b,c) < expld,abe),
As an immediate corollary we obtain

Covollary 1.2: The finite volume pressures ala,b,c),
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af(a,b,c), and af(a,b,c) are bounded uniformly in a, b
c, and §.

s

A comment on our result and method of its proof
might be useful. Recently the existence of the weakly
coupled r¢? field model has been established by Feldman
and Osterwalder* and Magnen and Seneor® independently.
The next step might involve the method of P(¢),° to
establish the existence of the strongly coupled r¢j field
model, It has been suggested that controlling the pres-
sures controls the Schwinger functions. ?»® Qur result
is the first step in controlling the pressure of the r¢3
field model. The method we will use is very simple and
looks useful. The main techniques are the method of
transfer matrix, Nelson’s symmetry and Holder’s in-
equality. We believe that by using our method one may
obtain the exponential bounds of the A% field model.
Also it will be interesting to show the convergence of
the pressures as the volume of the box @ tends to
infinity.

lI. PROOF OF THE MAIN RESULTS

In this section we give the proof of Theorem 1,1, The
method we will use is the method of transfer matrix,
Nelson’s symmetry and Holder’s inequality.® The main
procedure is as follows: To show Theorem 1.1 for
Z(a,b,c) we first transfer the partition function into
transfer matrix form and then use Holder’s mnequality
to contract length ¢ of one side into length 2¢,e> 0. This
allows one to compare the lower bound of Z(a, b, ¢) with
that of Z(a,d,2¢). Nelson’s symmetry gives us the
relation Z(a,b,2¢)= Z(2¢,a,b). We use the above proce-
dure two more times. The exponential (lower) bound
of Z(a,b,c) can be obtained from the fact that Z(e,e,¢)
> for small e. The above method will be also applied
for Z¥(a,b,c) and ZF(a,b,c). The above method has
been used by Guerra for the p(¢), model.® We will modi-
fy Guerra’s method slightly to control the divergent
wavefunction renormalization. Let H (a,b) be the doubly
cutoff (momentum cutoff x and space cutoff ¢ xb) in-
teraction Hamiltonian. See Ref. 1, Sec. 1.1 for the de-
tailed definition. In this section we will always assume
that there is no momentum cutoff in the interaction
action V, (a,b,c) in the time direction {see Ref. 1, Sec.
1.1). The partition function and the Hamiltonian are
related through!

Z(a,b,c)={exp[-cH (a,b)] exp[A(a,d) + T (a,b,c)],
2.1)

where A, + T, is the wavefunction renormalization’.
In the notation of Glimm and Jaffe, A, =A,(x)+ A (x)
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and T, = Ty(x)+ Ta(K). Here we have written the wave-
function renormalization into two parts to separate the
time independent divergent term A, (a,b) from the time
dependent regular term T, (a,b,c). Eventually we will
be able to control the divergent term A . First note
that from Ref. 1, Sec. 1.1 for a,b,c=¢> 0 there is

a constant, independent of the box @=aXbX¢ and mo-
mentum cutoff « such that

| T (a,b,c)| < const(e)abe. (2.2)
For notational convenience we write
2K(a, b,c)=(exp[- cH,(a,b)]) exp[A,(a,d)],
. (2.3)

Z(a,b,c)=l1im Z (a,b,c).
Kl

The above limits exists by (1.2), (2.1), and (2.2). From

(1.1), (2.1), and (2.2) it also follows that

exp[— Olabc)|Z, (a,b,c) < 2K(a, b,c)< explOla,b,c)]. (2.4)

The above relation also holds between Z(a,b,c) and
Z(a,b,c). The Holder’s inequality yields

(exp[-cH,(a,b)]) _ [(exp[_ 2eH,(a, b)])] (c=¢) /¢
{expl~eH (a, b)) ~ | {exp[-eH,(a,b)])

for (c —e)/e= 1. The above is a modification of Guerra’s
method. ® From Nelson’s symmetry in the lattice ap-
proximation and convergence of the lattice approxima-
tion ag lattice spacing tends to zero,® we also obtain

Zla,b,c)=Z(c,a,b)=Z(b,c,a). (2.86)

Proof of Theorem 1.1(a): We only need to prove the
first ineqality. From (2.4)—(2.6) it follows that for
(c-e)fe=1

(2.5)

Z(a,b,¢) > exp| - Olabe)]lim Z(a,b,c) by (2.4)  (2.4)
. [{expl- cHa,b)]
= exp|[— O(abc)] 1:}111 [(exp[—- @, 5] il
xZ,(a,b,e) by (2.3) (2.3)
> exp| - Olabc)]lim (Z,(a,b,2)] e/
x[Z (a,b,e)]"2)/¢ by (2.5) (2.5)

> exp| — const(e)abc]lim [2K(a, b,2¢)]lc-e) /¢

k~1

by (2.4) and (1.1)
> exp| - constle)abc][Z(a, b, 2e)]¢e*) /¢
by (2.4) and (1.1)
> exp| - const(e)abc][Z(2¢,a, b1 /¢ by (2.6).

Applying the above procedure two more times, we ar-

rive at

Zl(a,b,c) > exp| - constle)abe ][ Z (2, 2, 2¢)]le-ertmerte-e)/*
2.7

Using Feldman’s method,? it is not hard to show that

Z(e,e,e) 1 as e = 0. Choose ¢ sufficiently small such

that Z(2¢,2¢,2¢) > 5. Theorem 1.1(a) then follows from
(2.7. n

We next prove Theorem 1,1(b) and (c). We denote
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by V¥(a,b,c) the momentum cutoff interaction action of
the (r¢* - 0¢® - ug), field model with periodic boundary
conditions. See Ref. 3 for detailed discussions and
definitions. In general we allow that @ and 1 can be dif-
ferent from zero. We also define V¥¥(a,d,c) by
ViP(a,b,c)=V, (a,b,c) where V (a,b,c) is the action
corresponding to free boundary conditions. The half
periodic partition function is defined by

ZHP(a,b,c)=(exp[ - V#¥{(a,b,c)],

where we understand that () stands for the expectation
with respect to the Gaussian measure for periodic
boundary conditions on 982, Using a formula relating
two Wick orderings and using the explicit definitions of
the actions,®+® it is easy to check that

VEP(a,b,c)=VE(a,b,c) + b(K)ng $2(x):p dx +c(k, ),

| b(k)| < const uniformly in «, (2.8)

|e(x, )| < const abc uniformly in x.

Here we note that two divergence terms arose from
the change in the mass and vacuum counter terms in
(2. 8), but these cancelled each other out. The relation
(2. 8) implies that, to prove Theorem 1.1(b), it is suf-
ficient to show that Z#P(a,b,c)> exp[- O(abc)] for the
(Ap* - 0¢® -~ 1Ld), model in general. From (2. 8) and the
result of Ref. 3 it follows that

ZH%(q,b,c)=1lim Z#P(q b, )

k=1

exists. Let HF(a,b) be the free Hamiltonian in a periodic
square axb and let H?(a,b) be the momentum cutoff
(half periodic) interaction Hamiltonian of the (A¢* — 0¢p*
— u¢), field model. Following Ref. 10 we have

Z8%(a,b,c)
_ Ty{exp[- cHE(a,b)]}
- Ty{exp[- cHE (a, 0]}
We again use Holder’s inequality to obtain

Ty{expl - cH2a,b)]} _ [T.,{exp[_ 2HP(a, )]} ] (eme) /e
T,Jexpl - eB (a, )]}~ LT,{exp[-eHF(a, b)]}

exp(A,(a,b)+ T (a,b,c)]. (2.9)

(2.10)
for (c —¢)/e= 1. An explicit computation yields (¢ = ¢> 0)
exp| - Olabc)] < T,{exp| - cHE (a, b)]} < exp[O(abe)]. (2.11)

From (2.4) and the upper bound of the partition func-
tion® we also have

ZHP(a,b,c) < exp[Olabe)]. (2.12)

From Nelson’s symmetry for the half periodic parti-
tion function we have

ZiP(q,b,c)=Z""(c,a,b). (2.13)
We are now ready to prove Theorem 1.1(b) and (c).

Pyoof of Theovem 1.1 (b) and (c}: We follow the
method used in the proof of part (a). From (2.9)—(2.13)
it follows that for

N . T{expl—cHE(a,b,c)]}
ZHP(q,b,c) > exp| - Olabe)] 1,<1.ril Tr‘,{exp[— H @ BT

X ZHP(a,b,e) by (2.9) and (2.11)

Yong Moon Park 1074



> exp[ - const(e)adbc]lim [ZHP(a, b, 2¢)] '/
k=1

X[ ZHP (a,b,e)] =2 /¢ by (2.10) and (2.11)
> exp[ - const(e)abc] lim [ZH#P(a, b, 2¢)]¢c-) /¢
k=1

by (2.12)
= exp| - const(e)abc [ Z2P (a, b, 2¢)]c-e) /¢

= exp| - const(e)abc][Z#P (2¢,a, b)] =) /¢

by (2.13)

> exp[— const(e)abc][Z”P(Ze, 2, 26)](a-e)(b-e)(c-e>/e3_

In Ref. 3 it has been shown that, for any ¢, Z¥(2¢, 2¢, 2¢)
>0 for the (A¢* = 0¢® — p¢); model. From (2, 8) we also
have that Z#7(2¢,2¢,2¢) > 0. This gives us

ZiP(a,b,c) = exp[ - Olabc)]. (2.14)

To show the above bound for Z¥(a,b,c) we choose ¢
=1lim,_, b(x) and g =0. Theorem 1.1(b) now follows from
(2.8) and (2.14).

We now give a brief discussion of the proof of
Theorem 1,1(c). Notice that the relations correspond-
ing to (2.9), (2.10), and (2.13) hold for the lattice ap-
proximation. Also the relations corresponding to (2. 8)
and (2.12) hold for the lattice approximation (uniformly
in 6). Hence, if one follows the procedure used in the
proof of Theorem 1.1(b), one may obtain that

ZHP(a, b,c) = exp[ - const(e)abc]

X[ ZHP (2¢, 2, 2€)] (@) 0=¢) (e are’
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From the convergence of the lattice approximation and
from the argument used in the later part of the proof
of Theorem 1, 1(b) we have proven Theorem 1.1(c).
This complete the proof. u

Note added in manuscript: E, Seiler and B. Simon
have independently developed techniques similar to ours
in “Nelson’s Symmetry and All That in Yukawa, and
(¢%), Field Theories” (Princeton University Preprint,
1975).
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